• Title/Summary/Keyword: Displacement inspection

Search Result 335, Processing Time 0.026 seconds

A Study on Atmospheric Turbulence-Induced Errors in Vision Sensor based Structural Displacement Measurement (대기외란시 비전센서를 활용한 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.

Earthquake Response Analyses of Underground Structures Using Displacement Responses of Soil (응답변위법을 이용한 지중구조물의 지진해석)

  • Kim, Doo-Kie;Seo, Hyeong-Yeol;Park, Jin-Woo;Choe, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.133-142
    • /
    • 2006
  • This study performed earthquake response analyses of underground structures using displacement responses of soil. In this study, spring coefficients of surrounding soil proposed by specifications and researchers were adopted and then their corresponding analysis results were compared. The free field analyses using ProShake were carried out in order to predict ground responses of the field without underground structures. Several earthquakes such as El Centro, Ofunato, and Hachinohe earthquakes were considered to calculate maximum displacements. Numerical examples were analyzed, and then the results were compared and commented depending on spring coefficients of soil for the analyses using displacement responses of soil. The soil coefficients ranged from 0.05 to 14.39 times of those calculated by Korean Bridge Design Specification (2005). In conclusion, the coefficients of soil proposed by standard specifications seemed to be overestimated compared with those by the finite element method(FEM).

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

Development of an Array of EMAT for a Long-Range Inspection of a Pipe Using a Torsional Guided Wave

  • Cheong, Yong-Moo;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.239-245
    • /
    • 2007
  • A torsional guided wave mode in a tubular structure has many advantages in obtaining a higher sensitivity and lower attenuation for a defect, because it shows no dispersion characteristics and no radial displacement for a tubular structure. Many attempts have been made to excite and receive torsional guided waves by conventional piezoelectric transducers, but only a few examples are used during a practical field inspection. In this study, an array of electromagnetic acoustic transducers (EMATs) were for an excitation and reception of the torsional guided waves in a pipe was designed and fabricated. The signal patterns were analyzed based on various beam path length. The feasibility of detecting the defects was investigated through a series of experiments with artificial notches on a pipe.

Evaluation of Deformation Capacity of Various Steel Springs Subjected to Tensile Loading or Uniaxial Cyclic Loading (인장하중 및 반복하중을 받는 강재 스프링의 변형 성능 평가)

  • Kwon, Hee-Yong;Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, to evaluate the possibility of using a steel spring as a displacement-dependent damping device, tensile loading and cyclic loading tests were performed. The main experimental variables were the type of steel (SAE9254 and SS275), the spring constant (700 N/mm, 1,000 N/mm, and 1,400 N/mm), and the presence or absence of heat treatment for SAE9254. As a result of the tensile test, the ratios of the measured spring constant to the design spring constant of the steel springs made with SAE9254 ranged from 1.08 to 1.13, while the ratios of the design spring constant and the measured spring constant of the steel springs made with SS275 ranged from 0.86 to 0.97. After yielding, the slope values of the load-displacement curve of the SAE9254 with/without heat treatment were about 240~251 N/mm and 92 N/mm, respectively, but the slope values of the load-displacement response of SS275 were almost zero. According to the uniaxial cyclic loading test results, all specimens were satisfied with three conditions for a displacement-dependent damping device in KDS 41 17 00 (2019): the maximum force and minimum force at zero displacement, the maximum force and minimum force at the maximum displacement, and the energy dissipation capacity. In addition, the equivalent damping ratios of steel springs made with SAE9254(non-heat treatment) and SS275 were approximately 2.8 times and 1.9 times greater, respectively, than that of steel springs made with SAE9254.

Comparative Study on Feature Extraction Schemes for Feature-based Structural Displacement Measurement (특징점 추출 기법에 따른 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.74-82
    • /
    • 2024
  • In this study, feature point detection and displacement measurement performance depending on feature extraction algorithms were compared and analyzed according to environmental changes and target types in the feature point-based displacement measurement algorithm. A three-story frame structure was designed for performance evaluation, and the displacement response of the structure was digitized into FHD (1920×1080) resolution. For performance analysis, the initial measurement distance was set to 10m, and increased up to 40m with an increment of 10m. During the experiments, illuminance was fixed to 450lux or 120lux. The artificial and natural targets mounted on the structure were set as regions of interest and used for feature point detection. Various feature detection algorithms were implemented for performance comparisons. As a result of the feature point detection performance analysis, the Shi-Tomasi corner and KAZE algorithm were found that they were robust to the target type, illuminance change, and increase in measurement distance. The displacement measurement accuracy using those two algorithms was also the highest. However, when using natural targets, the displacement measurement accuracy is lower than that of artificial targets. This indicated the limitation in extracting feature points as the resolution of the natural target decreased as the measurement distance increased.

Development for Life Assessment System for Pipes of Thermal Power Plants

  • Hyun, Jung-Seob;Heo, Jae-Sil;Kim, Doo-Young;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.583-588
    • /
    • 2016
  • The high-temperature steam pipes of thermal power plants are subjected to severe conditions such as creep and fatigue due to the power plant frequently being started up and shut down. To prevent critical pipes from serious damage and possible failure, inspection methods such as computational analysis and online piping displacement monitoring have been developed. However, these methods are limited in that they cannot determine the life consumption rate of a critical pipe precisely. Therefore, we set out to develop a life assessment system, based on a three-dimensional piping displacement monitoring system, which is capable of evaluating the life consumption rate of a critical pipe. This system was installed at the "M" thermal power plant in Malaysia, and was shown to operate well in practice. The results of this study are expected to contribute to the increase safety of piping systems by minimizing stress and extending the actual life of critical piping.

Design of a non-contact type displacement measurement system based on optical triangulation method (광삼각법에 의한 비접촉식 변위측정계의 설계)

  • 이재윤;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1030-1035
    • /
    • 1992
  • This paper presents a non-contact type displacement sensor designed based on optical triangulation method. The optical principles of the sensor are described in detail with aids of paraxial geometric optics. A prototype sensor is designed and fabricated by using modern optoelectronic hardware. Its measuring performances are evaluated and discussed through a series of calibration processes.

Development of a displacement measurement system for architectural structures using artificial intelligence techniques (인공지능 기법을 활용한 건축 구조물 변위측정시스템 개발)

  • Kang, Ye-Jin;Kim, Dae-Geon;Woo, Jong-Yeol;Lee, Dong-Oun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.135-136
    • /
    • 2022
  • As a recent technology, it is possible to partially grasp the occurrence of displacement of the entire building through artificial intelligence technology for big data through scanning. However, scanning and data processing take a lot of time, so there is a limit to constant monitoring, so constant monitoring technology of building behavior that combines wireless remote sensors and 3D shape scanning is required. Therefore, in this study, artificial intelligence program coding technology is linked. In addition, a technology capable of real-time wireless remote measurement of structure displacement will be developed through technology development in response to safety management that combines existing building technologies such as sensors. Through this, it is possible to establish an integrated management system for safety inspection and diagnosis.

  • PDF