• 제목/요약/키워드: Displacement Ratio

검색결과 1,500건 처리시간 0.027초

마찰 감쇠기를 사용한 구조물의 보강 설계법 제안 (Seismic Retrofit Design Procedure Using a Friction Damper)

  • 문기훈;한상환;조한철;이강석
    • 한국지진공학회논문집
    • /
    • 제15권6호
    • /
    • pp.45-53
    • /
    • 2011
  • 본 연구의 목적은 마찰 감쇠기를 사용한 기존 구조물의 제진보강 설계절차를 제시하는 것이다. 보강된 구조물의 목표 지붕층 변위는 기존 구조물이 급격한 강도의 저감없이 보유내력을 발휘할 수 있는 최대변위를 초과하지 않도록 결정하였다. 보강 구조물의 변위는 비탄성 변위비 제안식을 이용하여 예측하였다. 제안된 방법의 유효성을 검증하기 위하여 80개의 지반운동 데이터를 사용하여 비선형 동적해석을 수행하였다. 해석결과 제안된 방법은 보강 구조물의 지붕층 변위를 정확히 예측할 수 있는 것으로 나타났다.

전류변성기 두 대와 절대 평가 기술을 이용한 2차 전류 범위 확장 (Secondary Current Range Extension of Current Transformers by Using Two Different Current Transformers and Absolute Evaluation Technique)

  • 김윤형;한상길;정재갑;한상옥
    • 전기학회논문지P
    • /
    • 제58권1호
    • /
    • pp.72-78
    • /
    • 2009
  • We have developed a current range extension method to obtain the ratio error and phase displacement of a current transformer (CT) by using absolute evaluation method and two different CTs. The method was applied to CTs under test with the current ratios in the range of 5,000 A / 1 A - 20,000 A / 1 A. The ratio error and phase displacement of the CT under test obtained in this study are consistent with those measured at the national institute in Germany using the same CT under test within an expanded uncertainty (k = 2) in the overall current ratios.

이중 아웃리거 구조 시스템의 한계 세장비에 대한 연구 (Study on the Limit Slenderness of a Double Outrigger System)

  • 양재광;강호근;박성수
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.11-18
    • /
    • 2018
  • Due to the recent overpopulation of urban cities, land shortage and soaring land prices have caused an increase in the demand for high-rise buildings. To build buildings on a limited land, the size of the building is important. Displacement control by horizontal loads in a skyscraper is critical to securing stability and usability of structures. Several systems have been proposed for efficient horizontal displacement control, and so far the study continues. Among them, the Outrigger System is a representative of the typical horizontal load resistance system. Although studies have been conducted so far to locate the optimal position of the outrigger, studies of the slenderness ratio of the buildings are still insufficient. Based on the Outrigger-Optimized Position equation, this study induces the calculation of the displacement of the outrigger installation building according to the slenderness ratio.

Seismic structural demands and inelastic deformation ratios: a theoretical approach

  • Chikh, Benazouz;Mebarki, Ahmed;Laouami, Nacer;Leblouba, Moussa;Mehani, Youcef;Hadid, Mohamed;Kibboua, Abderrahmane;Benouar, Djilali
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.397-407
    • /
    • 2017
  • To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation ratio which is usually developed for systems with known ductility factors ($C_{\mu}$) and ($C_R$) for known yield-strength reduction factor. The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both $C_{\mu}$ and $C_R$ effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak ground acceleration. This new inelastic deformation ratio ($C_{\eta}$) is describes the response spectra and is related to the capacity curve (pushover curve): normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), natural period (T), peak ductility factor (${\mu}$), and the yield strength reduction factor ($R_y$). For illustrative purposes, instantaneous ductility demand and yield strength reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), and natural period (T). Though the ductility demand and yield strength reduction factor differ greatly for some given T and ${\eta}$ ranges, they remain take close when ${\eta}>1$, whereas they are equal to 1 for periods $T{\geq}1s$.

Extending torsional balance concept for one and two way asymmetric structures with viscous dampers

  • Amir Shahmohammadian;Mohammad Reza Mansoori;Mir Hamid Hosseini;Negar Lotfabadi Bidgoli
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.417-427
    • /
    • 2023
  • If the center of mass and center of stiffness or strength of a structure plan do not coincide, the structure is considered asymmetric. During an earthquake, in addition to lateral vibration, the structure experiences torsional vibration as well. Lateraltorsional coupling in asymmetric structures in the plan will increase lateral displacement at the ends of the structure plan and, as a result, uneven deformation demand in seismically resistant frames. The demand for displacement in resistant frames depends on the magnitude of transitional displacement to rotational displacement in the plan and the correlation between these two. With regard to the inability to eliminate the asymmetrical condition due to various reasons, such as architectural issues, this study has attempted to use supplemental viscous dampers to decrease the correlation between lateral and torsional acceleration or displacement in the plan. This results in an almost even demand for lateral deformation and acceleration of seismic resistant frames. On this basis, using the concept of Torsional Balance, adequate distribution of viscous dampers for the decrease of this correlation was determined by transferring the "Empirical Center of Balance" (ECB) to the geometrical center of the structure plan and thus obtaining an equal mean square value of displacement and acceleration of the plan edges. This study analyzed stiff and flexible torsional structures with one-way and two-way mass asymmetry in the Opensees software. By implementing the Particle Swarm Optimization (PSO) algorithm, the optimum formation of dampers for controlling lateral displacement and acceleration is determined. The results indicate that with the appropriate distribution of viscous dampers, not only does the lateral displacement and acceleration of structure edges decrease but the lateral displacement or acceleration of the structure edges also become equal. It is also observed that the optimized center of viscous dampers for control of displacement and acceleration of structure depends on the amount of mass eccentricity, the ratio of uncoupled torsional-to-lateral frequency, and the amount of supplemental damping ratio. Accordingly, distributions of viscous dampers in the structure plan are presented to control the structure's torsion based on the parameters mentioned.

두께와 직경 비에 따른 두께진동모드 압전소자의 공진 변위 궤적 (Trajectory of Resonant Displacement of Thickness Vibration Mode Piezoelectric Devices According to Diameter/Thickness Ratio)

  • 정영호
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.105-109
    • /
    • 2012
  • In this study, thickness vibration mode piezoelectric devices for AE sensor application were simulated using ATILA FEM program, and then fabricated. Trajectory resonant displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electro mechanical coupling factor was obtained when the ratio of diameter/thickness($\Phi/T$) was 0.75. The piezoelectric device of $\Phi/T$=0.75 exhibited the optimum values of fr= 183 kHz, displacement= $4.44{\times}10^{-7}[m]$, $k_{33}$= 0.69, which were suitable for the application of AE sensor piezoelectric device.

철도교량에 거동발생 시 응력분포 분석에 따른 적정 방수재료 선정을 위한 평가 방법 (Waterproofing Material Evaluation Method based on Stress Dispersion Analysis due to Displacement in Railway Bridges)

  • 오규환;안기원;김수연;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.59-60
    • /
    • 2021
  • To measure the effect of the stress-strain dispersion across the installed waterproofing layer on the concrete surface, a strain gauge was attached to the gap between the waterproofing layer and the concrete structure at specified points of upper, center and bottom of the load-displacement simulation specimen, and the peak stress-strain at the displacement interface were measured and compared with stress-strain at other areas to analyze each material types' stress-strain dispersion ratio properties. Based on the results of the testing, it was shown that materials with high load-displacement resistance performance accordingly had high stress-strain dispersion ratio results, and the materials from highest performance to lowest performance were; CAS, SAS, PUC and CSC.

  • PDF

콘크리트 압축강도변화에 따른 철근 콘크리트 보의 휨연성 거동에 관한 실험적연구 (An Experimental Study on the Flexural Ductility of Doubly Reinforced Concrete Beams with Different Concrete Strength)

  • 박승종;김용부
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.131-140
    • /
    • 1999
  • This paper presents a study on the flexural ductility of reinforced concrete beams, 16beams with different concrete strength, reinforcement ratio, reinfo- rcement strength. For the purpose of inducing flexural failure, the reinforce ratio ($\rho$-$\rho$') was made not to be more than $0.75\rho$b in accordance with ACi code 318-89. From the test results, it is found that in case of a concrete strength increased from 240 to 650kg/$\textrm{cm}^2$, the displacement and curvature ductility factore are increased by about 31-231 percents. And also increased in case of increased from 650 to 900kg/$\textrm{cm}^2$, but the increasing ratio is gradually decreasing accoding to a concrete strength increases. And also found that as the Double Re-bar Ratio (($\rho$-$\rho$')/$\rho$b) increases, so the displacement and curvature ductility ratio would decrease, but in case of increased from 650 to /$900kg\textrm{cm}^2$ the decreasing ration is bigger than in case of increased from 240 to $650kg/\textrm{cm}^2$.

면진장치 특성 변화에 따른 중간층 면진시스템의 지진응답 평가 (Seismic Response Evaluation of Mid-Story Isolation System According to the Change of Characteristics of the Seismic Isolation Device)

  • 김현수;김수근;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.109-116
    • /
    • 2018
  • As the number of high-rise buildings increases, a mid-story isolation system has been proposed for high-rise buildings. Due to structural problems, an appropriate isolation layer displacement is required for an isolation system. In this study, the mid-story isolation system was designed and the seismic response of the structure was investigated by varying the yield strength and the horizontal stiffness of the seismic isolation system. To do this, a model with an isolation layer at the bottom of $15^{th}$ floor of a 20-story building was used as an example structure. Kobe(1995) and Nihonkai-Chubu(1983) earthquake are used as earthquake excitations. The yield strength and the horizontal stiffness of the seismic isolation system were varied to determine the seismic displacement and the story drift ratio of the structure. Based on the analytical results, as the yield strength and horizontal stiffness increase, the displacement of the isolation layer decreases. The story drift ratio decreases and then increases. The displacement of the isolation layer and the story drift ratio are inversely proportional. Increasing the displacement of the isolation layer to reduce the story drift ratio can cause the structure to become unstable. Therefore, an engineer should choose the appropriate yield strength and horizontal stiffness in consideration of the safety and efficiency of the structure when a mid-story isolation system for a high-rise building is designed.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.