• Title/Summary/Keyword: Displacement Follower

Search Result 45, Processing Time 0.02 seconds

A Study on Stability for Traverse Cam of Twising Machine using Shape Design Method of Relative Velocity and Modified Displacement Curves (상대속도에 의한 형상설계법과 개선된 변위선도에 의한 연사기용 Traverse Cam의 안정성에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.31
    • /
    • pp.101-112
    • /
    • 2001
  • A Twisting machine is to twist yarns for improving yarn stiffness. After twisting yarns, the twisting machine is winding yarn at a bobbin. Traverse cam is main part of winding yarn part. In other to improve twisting machine performance and stability, improve traverse cam part. Original displacement curves of traverse cam has two problems. One is that displacement curve has a vertex point the other is that velocity curve is discontinue point. So that, in this paper proposes a modified displacement curves of traverse cam and new shape design method of the traverse cam using the relative velocity method[1]. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationship and the kinematical constraints. Finally, we present to compare two designed cam. One is designed using original displacement curves the other is using modified displacement curve.

  • PDF

Flutter phenomenon in composite sandwich beams with flexible core under follower force

  • Saghavaz, Fahimeh Rashed;Payganeh, GHolamhassan;Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.615-630
    • /
    • 2021
  • The main purpose of the present work was to study the dynamic instability of a three-layered, thick composite sandwich beam with the functionally graded (FG) flexible core subjected to an axial compressive follower force. Flutter instability of a sandwich cantilever beam was analyzed using the high-order theory of sandwich beams, for the first time. The governing equations in general for sandwich beams with an FG core were extracted and could be used for all types of sandwich beams with any types of face sheets and cores. A polynomial function is considered for the vertical distribution of the displacement field in the core layer along the thickness, based on the results of the first Frosting's higher order model. The governing partial differential equations and the equations of boundary conditions of the dynamic system are derived using Hamilton's principle. By applying the boundary conditions and numerical solution methods of squares quadrature, the beam flutter phenomenon is studied. In addition, the effects of different geometrical and material parameters on the flutter threshold were investigated. The results showed that the responses of the dynamic instability of the system were influenced by the follower force, the coefficients of FGs and the geometrical parameters like the core thickness. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory. The results showed that the follower force of the flutter phenomenon threshold for long beams tends to the corresponding results in the Timoshenko beam.

A Study on Motion Analysis and Shape Design of Inverse Cam Mechanism with Square Shaped follower (사각형상 종동캠을 갖는 Inverse Cam Mechanism의 운동해석과 형상설계에 관한 연구)

  • Shin J.H.;Kwon S.M.;Kim J.C.;Kim B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1299-1302
    • /
    • 2005
  • Current mechanical devices are trending toward being a small size, high speedy, automation. For performing these functions, machinery elements organizing a machine should be designed exactly. Cams have high confidence and economics in ablility to transmit a motion. Accordingly, A cam mechanism is very important for processing the machine automatically. This paper introduce an inverse cam mechanism. A square shaped cam which cannot be commonly analyzed is designed and manufactured by using the NURBS interpolation algorithm. The objective of this paper is to develop a computer-aided design program. In this paper, a displacement curve of oscillating motion inverse cam mechanism with square shaped follower is analyzed. The data is redistibuted by the NURBS algorithm. A cam shape is designed by the instant velocity center method, and simulated to verify the validity of the operation state.

  • PDF

A Study on the Kinetodynamic Analysis for General Disk Cam Driving Slider Mechanisms (캠구동 슬라이더기구의 기구동역학 해석에 관한 연구)

  • Shin, Joong-Ho;Kim, Jong-Soo;Ha, Kyong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.871-883
    • /
    • 1997
  • Kinetodynamics of a cam driving slider mechanism consists of kinematic analysis and force analysis. The kinematic analysis is to determine the kinematic characteristics of a cam driving mechanism and a slider mechanism. The force analysis is to determine the joint forces of links, the contact forces of the cam and follower, and the driving torque of a main shaft. This paper proposes a close loop method and a tangent substitution method to formulate the relationships of kinematic chains and to calculate the displacement, velocity and acceleration of the cam driving slider mechanism. Also, and instant velocity center method is proposed to determine the cam shape from the geometric relationships of the cam and the roller follower. For dynamic analysis, the contact force and the driving torque of the cam driving slider mechanism are calculated from the required sliding forces, sliding motion and weight of the slider.

REDUCTION OF HIGH FREQUENCY EXCITATIONS IN A CAM PROFILE BY USING MODIFIED SMOOTHING SPLINE CURVES

  • Kim, D.J.;Nguyen, V.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2007
  • High frequency excitation terms in a cam profile can excite vibration of a cam follower system. In this paper, modified smoothing spline curves are used to reduce the high frequency terms. The essential difference between the proposed method and other existing approaches is its ability to make the principal cam motions smooth while still exactly satisfying boundary conditions of follower displacement, velocity and acceleration. The boundary values usually depend on the ramp properties of a cam. Our method, thus, allows designers to smooth the existing cam motion without any damages on its ramp areas. Because the ramp height, velocity and acceleration are maintained exactly, more radical smoothing is possible. An example shows that the proposed method can be a powerful tool of cam profile smoothing, which removes high frequency components in the cam profile excitations without any changes in ramp properties.

Optimization of Specific Film Thickness for a Disc Cam Using Genetic Algorithm (유전자 알고리즘을 이용한 원판 캠의 비 유막두께 최적화)

  • Kwon, Soon-Man;Kim, Chang-Hyun;Nam, Hyoung-Chul;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.924-929
    • /
    • 2008
  • The rate of wear of cam followers in a valve train system is mainly a function of contact stress between the cam and the follower, sliding velocity and hydrodynamic film thickness between the two mating surfaces. The wear or surface fatigue can be reduced by maximizing the elastohydrodynamic film thickness. In this paper, an attempt has been made to estimate the optimal specific film thickness of cam-follower system quantitatively. A general TES polynomial function with real values of exponents is developed and genetic algorithm (GA) is used as optimization techniques for maximizing the minimum specific film thickness. The optimization programs enumerate values of the exponents for synthesis of cam displacement curves. The results show that the minimum film thickness can be increased considerably, e.g. approximately 7% in this paper.

Development of camera auto-tracking system for telemanipulators (원격조작 로보트를 위한 카메라 추종시스템 개발)

  • 박영수;윤지섭;엄태준;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.825-830
    • /
    • 1990
  • This paper reports the design procedure and testing result of a servo driven pan/tilt device which is capable of tracking arbitrary movement of a specified target object. In order to achieve real-time acquisition of feedback signal, a 2 degrees-of-freedom non-contact type displacement follower is used. The performance of the system is tested for different target velocities and control gains. The result of the research may provide an effective tool for visual transfer in the context of teleoperation.

  • PDF

CAD System Development for Geometric Design and Motion Analysis of Tangential Cam (접선 캠의 형상설계 및 운동해석을 위한 CAD시스템 개발)

  • 조성철;송정섭
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.42-46
    • /
    • 1995
  • To purpose of this study is to model design and motion analysis of tangential cam mechanism using personal computer system. The CAD(Computer Aided Design) system used in this study was constructed with CPU(Central Processing Unit) 80486, RAM(Random Access Memory) 8M, CGA graphic card. By using developed program for tangential cam mechanism, we designed tangential cam models and analysed displacement, velocity, acceleration of follower.

  • PDF

Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving mass (이동질량을 가진 유체유동 회전 외팔 파이프의 동특성)

  • Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.308-311
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bemoulli hew theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever, pipe is more sensitive to the effect of a angular velocity.

  • PDF

Dynamic System Analysis of Machine Tool Spindles with Magnet Coupling

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.87-93
    • /
    • 2002
  • In this study, basic concepts of magnet were introduced, and dynamic characteristics of magnet coupling were explored. Based on these characteristics, it was proposed how to analyze transverse and torsional vibrations of a spindle system with magnet coupling. Proposed theoretical approaches were applied to a precision power transmission system machined for this study, and the transverse and torsional vibrations were simulated. The force on magnet coupling was shown as a form of nonlinear function of the gap and the eccentricity. Also, the form of torque transmitted by magnet coupling was considered as a sinusoidal function. Main spindle connected to a coupling of a follower part was assumed to be a rigid body. Nonlinear partial differential equation was derived to be as a function of angular displacement. By using the equation, torsional vibration analysis of a spindle system with magnet coupling was performed. Free and forced vibration analyses of a spindle system with magnetic coupling were explored by using FEM.