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ABSTRACT-High frequency excitation terms in a cam profile can excite vibration of a cam follower system. In this
paper, modified smoothing spline curves are used to reduce the high frequency terms. The essential difference between the
proposed method and other existing approaches is its ability to make the principal cam motions smooth while still exactly
satisfying boundary conditions of follower displacement, velocity and acceleration. The boundary values usually depend
on the ramp properties of a cam. Our method, thus, allows designers to smooth the existing cam motion without any
damages on its ramp areas. Because the ramp height, velocity and acceleration are maintained exactly, more radical
smoothing is possible. An example shows that the proposed method can be a powerful tool of cam profile smoothing,
which removes high frequency components in the cam profile excitations without any changes in ramp properties.
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1. INTRODUCTION

Certain types of cam follower systems, such as the auto-
motive engine valve trains, usually employ clearance (valve
lash) during the base-circle-dwell period. This ensures
the sealing of the combustion chamber by transferring the
spring force to the valve seat. The clearance, however,
inevitably produces impulsive valve opening and closing,
which is an important source of valve train noise. To
reduce the magnitude of the impact at the beginning and
ending of the valve event, the ramp period is incorporated
into the cam profile. According to Stoddant (1953) and
Norton et al. (1999), the ramp's functions are to compen-
sate for the clearance and the static follower deflections.
Effect of ramp properties on the valve train dynamics are
studied by Norton ef al. (1999) and An and Kim (2006).
Because the opening and closing valve events must be
precisely controlled, not only displacement but also velo-
city and acceleration of the ramp profile must be rigor-
ously designed.

On the other hand, dynamic behavior of a valve train
system is one of the critical concerns in designing auto-
motive engines. Abnormal valve train behaviors such as
jumping, bouncing, excessive spring surging, etc, must
be prevented throughout the whole range of engine opes-
ating speeds. Because a follower motion excites valve
train dynamics, fine-tuning of the cam profile is neces-
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sary in the early stage of valve train design. If the engine
operating speed is constant, cam profile excites the valve
train system periodically. Therefore, cam excitation force
can be assumed to be a series of harmonic functions.
Many researches and experiments, presented by Seidlitz
(1989), Norton et al. (1999, 2002) and others, have proved
that there are strong correlations between the valve train
dynamics and the magnitude of cam profile harmonic
components. They also showed that, in most automotive
engines, significant spring surging is correlated to the
9th~13th harmonic amplitudes of the cam motion. Higher
order components such as 20th~50th usually excite the
follower vibrations that depend on the natural frequencies
of the cam follower system. Even though low order com-
ponents of the cam profile harmonics cannot be reduced
without changing timing or lift of cam event, the ampli-
tude of high order components can be modified without
meaningful changes in the cam displacement. This fact
allows cam designers to design a dynamically stable valve
train system without degrading engine performance.
Data smoothing technique using spline curves is wide-
ly used to reduce the amplitude of high order harmonic
components in cam profiles. The first method that is
worthy of mention is the smoothing technique using spline
functions. It was introduced by Reinsch (1963) and
improved by Craven and Wahba (1979). Eilers and Marx
(1996), Kano et al. (2005) presented smoothing methods
based on B-spline curves. Since the 1960s, some other
smoothing methods that are based on generic spline curves
have also been proposed (Hardle, 1994). Because notice-
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able changes in velocity and acceleration curves result
from very tiny modifications in displacement curve, the
existing cam profile smoothing techniques do not allow
significant changes in ramp displacement. This fact usually
limits the level of benefit from the profile smoothing.
This paper proposes a new method to smooth existing
cam profiles. It is based on modified smoothing spline
curves that constrain displacement, velocity and accele-
ration at boundaries. Therefore, the smoothed cam profile
can be connected exactly with the original opening and
closing ramps up to the second order derivatives. This
particularity of the proposed method enables designers to
smooth cam profiles without worrying about the damage
to ramps. Because high frequency components in the cam
profile excitation are minimized effectively, NVH (Noise,
Vibration and Harshness) characteristics of cam follower
systems can also be improved without any negative effect.

2. CAM PROFILE SMOOTHING METHOD

2.1. Dynamic Excitation of Cam Profile
In a valve train system, the follower motion is normally
driven by cam motion through their contact forces.
Figure 1 shows a typical example of automotive engine
valve train, which employs a disk cam driving a flat-faced
follower and a return spring. In the ideal case, the follower
motion is precisely followed by the cam’s pre-programm-
ed motion. Unfortunately, this is not possible in practice
because of valve train internal vibrations. Many researches
on dynamic responses and their influences on cam follower
systems have been presented. In these researches, many
different types of dynamic models have been introduced
to simulate valve train dynamics. Reviews about these
models can be found in Norton (2002) or Rothbart
(2004). In this paper, the linear models will be employed
to avoid redundant complications. However, even if any
model is employed, the motion equation of the cam
follower system can be written as the matrix form in
Equation (1). Dimension of the mass, damping and stiff-
ness matrixes, i.e. M, C and K representatively, depends
on the DOF of the used model. Values of the matrixes’
components evidently depend on physical parameters of
the cam follower system.

M - $+C - $+K - s=F (1) )

Here, s is a vector of the lumped mass motions in the
model. F() is a vector of external forces that correlate
directly with the cam profile curve and its derivatives as
follows

F(t)=F. - y(1)+F: - y(1)+F; - y(1) @

Also, y(»), y(t), and y(r) are lift, velocity and accele-
ration of the valve motion respectively. The constant
vectors F,, F, and F; depend totally on physical para-

Valve

Figure 1. A typical direct acting type OHC valve train.

meters of the valve train system. This could be confirmed
through experimental results that have been presented in
Norton (2002) and Rothbart (2004). Alternatively, the
cam displacement curve y, that is a function of the cam
rotation angle x, can be approximated by a Fourier series
in order domains. If the camshaft rotation speed is
denoted to be win rad/sec, the external force at @ can be
rewritten as

F()=3 Fae™ 3)

Here, F*=F ,+j k@F,—( k®)’F; is the Fourier coefficient
vector of the external force at the k-th harmonic order and
camshaft rotation speed is @ &* is the Fourier coefficient
of the cam displacement curve at x=th harmonic order.
And n is number of harmonic components employed to
analyze the system while j* = -1.

Considering steady state response of Equation (1),
large response may occur when one of the excitation
frequencies in Equation (3) coincides with (or is multiple
of) the natural frequency of the system. This is called
resonance, which occurs at the critical speed of the
respective harmonic number. Furthermore, the magnitude
of the response at resonance depends primarily on the
Fourier coefficient * of the cam profile curve. As a
result, a harmonic analysis of the cam profile curve will
give an indication of the performance that is to be
expected.

In general, with any periodic function that has a finite
number of singular points, we can always find a conver-
gent Fourier series to represent it. In other words, magni-
tude of the coefficients a* will decrease as harmonic
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Figure 2. Opening and closing ramps in a typical automotive engine cam profile.

order increases. However, as shown in the formula of F*,
acceleration terms in the excitation force are proportional
to the square of both the harmonic order (x) and the
camshaft rotational speed (@). Therefore, it is clear that
high order components in the cam profile are also impor-
tant source of valve train vibrations. In order to design a
dynamically stable cam follower system, we must reduce
the amplitude of the high order harmonic components.
Base on Darboux’s principle that can be found in Boyd
(2000), the smoother the function y is, the faster the
convergence of its spectra series & will be. This provides
a strong motivation to smooth cam profiles.

2.2. Modified Smoothing Spline Curve

In design stage, cam designers usually work with some
requirements on displacement, velocity and acceleration
curves. Figure 2 shows displacement, velocity and accele-
ration curves of a typical cam profile that is used in an
automotive engine. The main event of the cam profile is
connected with the opening and closing ramps. To prevent
impulsive valve opening and closing, ramp properties must
be precisely controlled in consideration of dynamics of
valve trains. In the cam profile smoothing process, it is
desirable that only the principal cam motion is modified
without any changes in ramp properties. In other words,
principal profile must be exactly connected with the
original ramps up to the acceleration at the connection
points (x,, and x, in Figure 2). It is assumed that Y; are a
set of given displacement of the original cam profile at
corresponding camshaft rotation angles x, with i=0, ..., n
and x, < x;< '+ <x, To estimate the deviation between
the smoothed and original cam profiles, the mathematical
concept of “residuals” is introduced, which is the sum of
the squares of offsets of the points from the curve. If the
smoothed cam profile curve is defined as g(x), the
deviation can be bounded as follows.

c(x):é (%} <s )

Here, 8Y,> 0 controls the weighting of the given control
points in displacement. §2>0 is named redundant con-
stant that controls the allowable deviation between the
smoothed curve and the original cam displacement. By
adjusting the weight factors and the redundant constant,
designers can tighten or loosen the local constraints in the
smoothed cam profile.

As mentioned above, smoothness of the designed cam
profile is also important for better performance in high-
speed cam follower systems. As reviewed in Reinsch
(1967), Craven and Wahba (1979), the roughness penalty
function, which is defined in Equation (5), estimates the
roughness of the spline curve g(x).
fx)= [ 1g”(x)] dx — min )

%o

Here, superscript () is the derivative order. Because the
roughness penalty function contains r-th derivative terms,
the function g(x) must be the piecewise polynomial of
degree N=2r-1. Therefore, degree of the spline that is
used in this method must always be odd. Additionally, the
curve must satisfy continuous derivative conditions up to
the order of (2r-2).

[xo’ xn] (6)

On the other hand, the smoothed cam profile must also
satisfy exactly all the boundary conditions at x,, and x,.
We denote that in Figure 2, Y,, V,, A, represent the
opening ramp height, velocity and acceleration, respec-
tively. Similarly Y,, V,, and A, are the closing ramp
height, velocity and acceleration. The boundary condi-
tions of the smoothed cam profile at the connection points
with the opening and closing ramps can be expressed as
follows.

2r—2

ge C

g(x0).=Yo; g(x,)_=Y,
g,(x0)+=VO; g’(xn)—=vn (7)
g”(x0)+=AO; g”(-xn )—=An
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Although smoothing methods using B-spline or P-spline
(an inheritance of B-spline) may satisfy smoothness and
fit conditions, it is not appropriate to apply these methods
for smoothing an existing cam profile. One of the pro-
blems is that the boundary values of the resulting curves
and/or their derivatives are not accurate, due to the
characteristics of B-spline (Eilers, 1996 and Kano, 2005).
On the other hand, because modifications of control
points of B-spline only affect some neighboring segments,
the resulting curve based on B-spline may hold some
uninvited extraordinary points when boundary conditions
are exactly constrained. References can be found in
Sandgren and West (1989) or Tsay and Huey Jr. (1993).
When the continuity of basic spline curves, which are in
n-1 N
the form of g(x)= Z z a; (x — x;)", is considered, it is
i=0 k=0

found that the velocity boundary values are dependent on
the boundary conditions of displacement and acceleration
curve (see in Reinsch, 1967). Therefore, to satisfy the
boundary conditions (7), some additional terms must be
added to the first and last segments of the basic spline
curve. The additional terms may be in any form as long
as they satisfy the following condition: the velocity value
at boundaries become independent of the boundary
conditions of displacement and acceleration curves. How-
ever, by considering smoothness property and convenience
of calculation, a modified smoothing spline of N degree,
g(x), is chosen in the form of Equation (8).

N
N
Z ao’k(x—xO)k‘f'eo(x—xo)(.x—xl)
k=0 with x, < x < x,
N
Z a(x=x), X, Sx <Xy, i=1l...n~2 ®)
k=0

gl)=

N

k
D (=2 D) e (x—x, ) (x-x,)
k=0 with x,_; <x<x,

The smoothed cam profile g(x) is a solution of the
optimization problem in Equation (5), which satisfies the
inequality constraint in Equation (4), the continuity
conditions in Equation (6) and the boundary conditions in
Equation (7). To solve this problem, the Lagrange multi-
plier method that converts the constrained problem into
an unconstrained one is employed.

As reviewing Boyd and Vandenberghe (2004), we
denote the estimative function f(x, 4) of Equation (5)
under constraints (4), and Lagrangian multiplier A as
follows

Fox, = 18200 dwr - { Y (el=1) —s} ©)

The curve g(x) reaches the smoothest profile when
f(x, A) — min. The optimal solution may be obtained
by the standard methods of the calculus of variations that
can be found in Stone (2002). If hA=(x,—x,)/n and h=x;,,—x;
are defined, the variation function of the function
flx, 1) will be as follows

lp:[g“)(x)]%%(g%l) (10)

Here, &y is the positive weighting function that corre-
sponds to discrete weighting factors 6Y,. Thereby, the
necessary condition for the extreme value of function (9)
to exist becomes

N 'd( ¥

¥ L= gyt D 550)=0 ()
From continuity condition (6), boundary conditions (7),
and necessary condition (11), we can determine the optimal
curve g(x). As previously mentioned, the proposed appro-
ach aims to be applied in high-speed cam follower
systems. Because of physical essence of cam mechanisms,
the curve needs to satisfy continuity up to the second
order. The optimal curve g(x), which is a smoothed cam
profile, needs to be a modified cubic or quintic function.

If operating speed is not very high, a smoothing spline
that is based on the modified cubic spline curve can be
used. However, because the modified cubic spline is less
flexible than modified quintic spline, its smoothness pro-
perty is sometime unsatisfactory. If cam profiles are
operated at high speeds, not only a low peak value but
also a continuous jerk curve is required. This property
exceeds the ability of the modified cubic spline curves
and necessitates the use of a modified quintic spline curve.
Therefore, the modified quintic spline would be chosen
to present in this paper. This algorithm is presented in
Section 3.1.

3. ALGORITHM AND NUMERICAL
SOLUTION

3.1. Modified Smoothing Quintic Spline Method
Modified smoothing quintic spline is a set of piecewise
polynomials in the form of Equation (8) with N=5. As a
result, Equation (11) now becomes as follows

Ag(X) =y _ ©(
RS- =0 (12)

Because the sixth order derivative of the curve can be
approximated by its fifth order derivative terms, we can
obtain the following relation from Equation (12).

'“ﬂxfgy‘?%g(”(x,-x - g7(x)-=0 (13)

From the continuity condition (6), this curve must satis-
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fied continuity up to the fourth order. If derivative order
is denoted as k=0,..., N-1, the polynomial coefficients
can be obtained by a system of equations as follows

g9(x)—g" (x).=

0, k=0,1,2,3,4; i=1..(n— 1)

_%(g(xi)_yi), k=5;i=l..(n-1)

(14)

Because the modified quintic spline in the form of
Equation (8) have (6n+2) unknown coefficients in total
and Equations (7, 14) have only 6n equations, two more
equations are required. Because jerk values at the boun-
daries are dependent on the other properties (see Craven
and Wahba, 1979), derivative of jerk at the boundaries
are assigned to be zero.

g9 (x0). =" (x,)-=0 (15)

Therefore, (6n+2) polynomial coefficients of the modi-
fied quintic spline can be obtained by solving the system
of (6n+2) Equations (7, 14, 15). These coefficients are
now functions of the Lagrange multiplier. If Lagrange
multiplier is determined, the set of piecewise polynomials
in Equation (8), which represents a smoothed cam pro-
file, is determined.

3.2. Determination of Lagrange Multiplier

Polynomial coefficients a,, of the smoothed spline curves

is defined in the form of vector a={a,;..a;5..a,.,}~ The
initially given cam displacement is also defined as
y={Y...Y...Y, . }» Therefore, an additional equation for the
objective function to be minimum can be written in a
matrix form as

Aeh)_ S (1) g 16

_(a—yYD(a- y)-5-0

Here D is a diagonal matrix, whose diagonal terms are
equal to the weighting factors of control points. Lagrange
multiplier A must be determined to obtain the coefficients
of the piecewise polynomials in the smoothing spline
curves from Equations (7, 14, 15). Because the coeffici-
ents of the spline are functions of A, the left-side of
Equation (16) is also a function of the Lagrange multiplier.
Therefore, the Lagrange multiplier can be obtained from
Equation (16). However, analytic solutions to Equation
(16) are almost impossible to find. Accordingly, numerical
solution can be regarded as a realistic option. In this
study, the Newton-Raphson method was chosen for the
problem. It is easy to verify from Equation (16) that A=0
is one of its solutions. However, this is a trivial solution,
which makes the spline curve a straight line.

If we define G(D)=[(a~y) D (a-y)|.. it is a func-

tion of A. Equation (16) is now rewritten as G*(4)=S.
Because G(A4) is a function of Lagrange multiplier only,
we can find derivative of G*(A) as

dG!ﬂ} T -zda
G(A), a, and da/dA are completely evaluated for each
value of A. Therefore, at the i-th step, dA, can be
determined as follows from Equation (17).

G*(A)=S - G(A)

dﬂ«,‘= T ~
(a|4=4i—y) D (da/d/l)ll=/ii

(18)

As a result, the value of A at the next step in the Newton-
Raphson method is updated as

ﬂi+l=li_d/li (19)
4. ILLUSTRATIVE EXAMPLE

This section presents an example to illustrate the appli-
cation of our proposed method to smooth an existing cam
profile. The results are compared with that obtained by
Reinsch’s algorithm. A typical asymmetric DRRD (Dwell-
Rise-Return-Dwell) cam profile, which is used in an
automotive engine valve train, is considered. Physical
parameters of the cam profile are summarized in Table 1.

Figure 3 compares displacement, velocity, acceleration
and jerk curves of the three cam profiles. One is the
original cam profile before smoothing and the others are
cam profiles smoothed by Reinsch’s algorithm and the
proposed algorithm. Because the cam profile modification
by smoothing is very small, it is difficult to distinguish
between the original and the smoothed cam profiles in
displacement and velocity curves (Figure 3a, 3b). This
fact ensures that cam profile smoothing has no meaning-
ful influence on the intake and exhaust flow efficiency.

Table 1. Design parameters of a cam profile.

Y,=9.85 (mm)
Vine=0.285 (mm/deg)
Vauine=—0.280 (mm/deg)
Apnaa=0.0147 (mm/deg’)
Apa=0.0148 (mm/deg?)
Anin=—0.0092 (mm/deg?)
[%o, x,]=[-0.62°, 62.0°]
Y,=0.05 (mm)

¥,=0.15 (mm)
V,=0.0151 (mm/deg)
V,==0.0151 (mm/deg)
A=7.8x10" (mm/deg?)
A,=3.4x10" (mm/deg?)

Maximum cam lift
Maximum velocity
Minimum velocity

Max. acceleration (rise)
Max. acceleration (return)
Minimum acceleration
Angles of ramp connection
Opening ramp height
Closing ramp height
Opening ramp velocity
Closing ramp velocity
Opening ramp acceleration
Closing ramp acceleration
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Figure 3. Comparison of the original and the smoothed cam profiles.

However, cam profile changes by smoothing are notice-
able in the acceleration and jerk curves (Figure 3c, 3d).
Because of the inherent characteristics of the smoothing
spline, both algorithms generate smooth acceleration curves
(Figure 3c). Peak values of the jerk curves are signifi-
cantly reduced by the cam profile smoothing (Figure 3d),
which can improve dynamic performance of high-speed

n.')n \
0.16 1

Opening ramp xz;:tl Closing ramp
0.12

Cam angle (deg)

70 65 62 62 70 80
(a) Displacement curves of the ramps (mm)

x Original cam profile --------- Smoothed cam profile (Reinsch’s algorithm)

valve train system.

As long as we are concerned with the main event of the
cam profile, there is no big difference between Reinsch’s
algorithm and the proposed algorithm. Both the algorithms
can generate relatively smoother acceleration curves and
reduce jerk levels. However, the most critical problem of
Reinsch’s algorithm is that ramp properties are damaged

003

’ .
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0024 //
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T 663 # T
-72 70 -62 62 70 80
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Figure 4. Comparison of the ramp properties of the original and the smoothed cam profiles.
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Figure 5. Comparison of harmonic amplitudes of the acceleration of the original and the smoothed cam profiles.

Table 2. Comparison of ramp heights and velocities between original cam profile and smoothed cam profiles.

Rot.
Angle
(deg)

Displacement (mm)

Velocity (mm/deg)

Rot.

Orig.
cam
profile

Reinsch
method

Our
method

Orig.
cam
profile

Reinsch
method

Our
method

Angle
(deg)

Displacement (mm)

Velocity (mm/deg)

Orig.
cam
profile

Reinsch
method

Our
method

Orig.
cam
profile

Reinsch
method

Our
method

(A) Opening ramp

(B) Closing ramp

=78

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0007
0.0037
0.0105
0.0214
0.0351
0.0500
0.0652
0.0817
0.1012

(0.0001
0.0001
-0.0000
-0.0001
-0.0003
-0.0006
-0.0009
-0.0012
-0.0015
-0.0014
-0.0006
0.0011
0.0043
0.0094
0.0164
0.0255
0.0367
0.0500
0.0661
0.0861

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0007
0.0037
0.0105
0.0214
0.0351
0.0500
0.0652
0.0822
0.1029

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0004
0.0019
0.0049
0.0088
0.0123
0.0143
0.0151
0.0159
0.0180
0.0223

-0.0000
-0.0000
-0.0001
-0.0001
-0.0002
-0.0003
-0.0003
-0.0003
-0.0001
0.0004
0.0012
0.0025
0.0041
0.0061
0.0081
0.0101
0.0123
0.0147
0.0180
0.0226

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0004
0.0019
0.0049
0.0088
0.0123
0.0143
0.0151
0.0159
0.0185
0.0234

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

0.2001
0.1814
0.1652
0.1500
0.1350
0.1200
0.1050
0.0900
0.0750
0.0600
0.0455
0.0321
0.0206
0.0117
0.0056
0.0021
0.0005
0.0000
0.0000
0.0000

0.2107
0.1866
0.1673
0.1512
0.1366
0.1227
0.1088
0.0947
0.0805
0.0663
0.0526
0.0398
0.0284
0.0188
0.0112
0.0057
0.0021
-0.0001
-0.0011

0.2019
0.1818
0.1652
0.1500
0.1350
0.1200
0.1050
0.0900
0.0750
0.0600
0.0455
0.0321
0.0206
0.0117
0.0056
0.0021
0.0005
0.0000
0.0000

-0.0213
-0.0174
-0.0157
-0.0151
-0.0150
-0.0150
-0.0150
-0.0150
-0.0150
-0.0148
-0.0140
-0.0124
-0.0102
-0.0075
-0.0048
-0.0026
-0.0010
-0.0002
-0.0000

-0.0014 0.0000 0.0000

-0.0277
-0.0217
-0.0177
-0.0154
-0.0142
-0.0139
-0.0140
-0.0142
-0.0142
-0.0139
-0.0133
-0.0121
-0.0105
-0.0086
-0.0065
-0.0046
-0.0029
-0.0016
-0.0006
-0.0001

-0.0226
-0.0180
-0.0157
-0.0151
-0.0150
-0.0150
-0.0150
-0.0150
-0.0150
-0.0148
-0.0140
-0.0124
-0.0102
-0.0075
-0.0048
-0.0026
-0.0010
-0.0002
-0.0000
0.0000

by the profile smoothing. Reinsch’s algorithm does not
distinguish between the main event and ramps, therefore,
the whole ramp profiles are changed from its original
design (Table 2 and Figure 4a, 4b). Because the ramp
heights and velocities must be precisely controlled to
maintain the valve opening and closing performances, it
is difficult to use Reinsch’s algorithm in antomotive engine

cam profile smoothing. On the other hand, the proposed
algorithm makes only the main event of the cam profile
smooth without any damages on the ramp areas. Dis-
placement, velocity and acceleration of the smoothed
cam profile are exactly connected with the original ramps
(Table 2). Therefore, the proposed algorithm could be
effectively used to smooth automobile engine cam profiles.
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Figure 5 shows harmonic amplitudes of the three cam
profiles. At low order ranges (1st~2th harmonics), magni-
tudes of the harmonic components of the three cam pro-
files are almost identical. This result was already expect-
ed because cam profile modification by smoothing is
very small. The differences between the harmonic ampli-
tudes are only obvious at high order components (20th
~50th). As shown in Figure 5, magnitude of the harmonic
components of the smoothed cam profiles decreases
faster than that of the original cam profile. The harmonic
amplitudes of the cam profile obtained by the proposed
algorithm are smaller than those of the original, but are
generally greater than those of Reinsch’s algorithm. This
result was also expected because the proposed algorithm
smoothes only the main event while Reinsch’s algorithm
smoothes the whole period of the cam profile. It is
inevitable for the unsmoothed ramp to produce some
unwanted high frequency excitation components. However,
because actual valve motion does not appear during the
ramp periods, these differences do not create any negative
effect on the valve train internal vibration.

Harmonic amplitudes of the cam profile obtained by
the proposed method are almost 50% reduced in high
order components (20th~50th). Because these harmonic
components usually coincide with valve train natural fre-
quencies in the operating speed range of automotive
engines, reduction of the harmonic amplitudes can signi-
ficantly improve valve train internal vibration. However,
because harmonic amplitude reduction in 9th~13th order
is negligible, suppression of valve spring surging cannot
be expected by profile smoothing.

5. CONCLUSIONS

In this paper, a new cam profile smoothing method is
presented, which uses modified smoothing spline curves.
The conclusions are summarized as follows:

(1) Unlike other existing algorithms, the proposed method
can smooth a given cam profile without any damages
on its ramp areas. Although main event of the cam
profile is modified by smoothing, the ramp height,
velocity and acceleration are maintained exactly.
Therefore, the method can be a powerful tool of cam
profile smoothing, which removes high frequency
components in the cam profile excitations without
any changes in ramp properties.

(2) Even though the proposed method smoothes only the
main event of the cam profile, high frequency com-
ponents in the cam profile excitation can be reduced
up to 50% in a typical application to an automotive
engine cam.

(3) Because relatively low order (1st-20th) harmonic
components in the cam profile excitation cannot be
reduced by the profile smoothing, it is not a solution

to suppressing valve spring surging.

(4) Cam designers can use this method to improve NVH
characteristics of a cam follower system. Because
ramp properties are not changed, valve train dynamics
in high operating speeds can also be improved without
any negative effect on the engine performance.
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