• Title/Summary/Keyword: Dispersion effects

Search Result 824, Processing Time 0.03 seconds

Optical Transmission Link with Dispersion Map of Antipodal Symmetry and OPC (원점 대칭 분산 맵과 OPC를 가진 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.286-292
    • /
    • 2021
  • Dispersion maps of antipodal symmetric type for improvement of compensation effect in dispersion managed link combined with optical phase conjugation, which can compensate for the distorted wavelength division multiplexed (WDM) signals due to chromatic dispersion and nonlinear Kerr effects of single-mode fiber, were proposed. It was confirmed that the proposed all of antipodal symmetric dispersion maps was more effective to compensate for the distorted WDM channels than the conventional link of uniform type dispersion map. Especially, dispersion maps formed like the inversion of alphabet S were more advantageous as the distorted WDM channels were compensated than dispersion maps formed like alphabet S. It was expected that the variety of optical network topology was more expanded by applying the proposed antipodal symmetric dispersion maps into transmission link.

Dispersion-managed Optical Link Configured Antipodalsymmetric Dispersion Maps with Respect to Midway Optical Phase Conjugator

  • Jae-Pil Chung;Seong-Real Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2023
  • We investigated the antipodal-symmetric dispersion maps of a dispersion-managed link with a midway optical phase conjugator to compensate for the distorted 960 Gb/s wavelength division multiplexed (WDM) signal caused by these effects. The proposed antipodal-symmetric dispersion map has various shapes depending on the detailed design scheme. We confirmed that the dispersion-managed link designed with the dispersion map of the antipodal-symmetric structure is more advantageous than the conventional uniform dispersion map for compensating WDM channels. It was also confirmed that among the antipodal-symmetric structures, the dispersion map configured with the S-1-profile, in which S is inverted up and down, was more effective for distortion compensation than the dispersion map configured with the S-profile. In particular, we confirmed that the S-1-profile can broaden the optical pulse width intensively at a short transmission distance, more effectively compensating for the distorted WDM channel. Because this structure makes the intensity of the optical pulse relatively weak, it can decrease the nonlinear Kerr effect.

An effects of the Pulse Distortion due to Dispersion and Reflection on Tapered Microstrip Line (데이퍼형 마이크로 스트립 선로에서 분산과 반사가 펄스의 왜곡에 미치는 영향)

  • 김기래
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.271-274
    • /
    • 2000
  • In this paper, the distortion of an electrical pulse with rise/fall time resulting from dispersion and reflection as it propagates along a tapered microstrip line is investigated, and the delay time and distortion rate with respect to input and load impedances are analyzed on triangular and exponential tapered lines and analyzed the influence of the reflection and frequency dispersion on the distorted voltage wave in the tapered lines. The observed overshoot in front of the distorted wave is caused due to the frequency dispersion and the sustained tail of that comes from the reflection in the tapered line.

  • PDF

Improvement of Dispersion Stability of Ink-jet Ink for Polyester Fiber (폴리에스터용 잉크젯 잉크의 분산안정성 개선에 관한 연구)

  • 최재홍;지병철;서인석
    • Textile Coloration and Finishing
    • /
    • v.15 no.5
    • /
    • pp.321-326
    • /
    • 2003
  • In order for disperse dye based ink to be fitted with the critical requirements of ink jet printing, this study was undertaken to investigate the effects of 6 different dispersants on the milling efficiency of insoluble dye particles and dispersion stability of the final ink. It was found that a polystyrene dispersant with high molecular weight exerted relatively better dispersion stability which may be associated with its steric stabilization effect in the ink solution.

Preparation and Characterization of Stable Dispersions of Ni Nanoparticles

  • Lee, Eun-Hee;Lee, Min-Ku;Rhee, Chang-Kyu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.413-414
    • /
    • 2006
  • The effects of several experimental parameters on the formation of stable Ni nanoparticles dispersion were investigated. The suspensions of Ni nanoparticles were produced in organic solvents using Hypermer KD-2 as a dispersant. The transmission profiles, particle size distribution, zeta potential, and visual inspection results were used to discuss the stability of the dispersion. The optimal conditions for the formation of stable dispersion are evaluated.

  • PDF

Rheological Properties of Soyprotein Dope (알칼리를 처리한 콩단백질 용액의 물성)

  • Kim, Jee-Cheon;Cho, Sook-Ja;Byun, Pyung-Hwa;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.759-763
    • /
    • 1991
  • The dynamic rheological properties of the dope and the hydrated disperson of the soyprotein, as a starting material of soyprotein fiber, were studied to investigate their viscoelastic properties. The increase of protein concentration in the both cases of the dope and the dispersion resulted in the establishment of intermolecular reaction of the protein. With the addition of alkali solution to the dispersion, the dope shows the characteristics of very lightly cross-linked high molecular weight polymer. In constrast, the dispersion shows the properties of an amorphorous polymer. The effects of chemical modification of the dispersion on the dynamic properties were also investigated.

  • PDF

Sound Dispersion in Simple Fluids

  • Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.171-182
    • /
    • 1974
  • Sound dispersion in simple fluids is analyzed applying a generalized hydrodynamic ethod for time correlation functions. The effects of shear relaxation on the sound dispersion are examined for liquid argon and a dilute hard-sphere gas. In the case of liquid argon, the dispersion predicted by the theory over quite a wide range of wavenumbers exhibits the combined effects of shear relaxation and structural correlations. The results for a dilute gas indicate that that the inclusion of shear relaxation gives a qualitative improvement of Wavier-Stokes theory.

  • PDF

Downward and Upward Air Flow Effects on Fume Particle Dispersion in Laser Line Cutting of Optical Plastic Films

  • Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • In improving laser cutting of optical plastic films for mass production of optoelectronics display units, it is important to understand particle contamination over optical film surface due to fume particle generation and dispersion. This numerical study investigates the effects of downward and upward air flow motions on fume particle dispersion around laser cut line. The simulations employ random particle sampling of up to one million fume particles by probabilistic distributions of particle size, ejection velocity and angle, and fume particle dispersion and surface landing are predicted using Basset-Boussinesq-Oseen model of low Reynolds number flows. The numerical results show that downward air flow scatters fume particles of a certain size range farther away from laser cut line and aggravate surface contamination. However, upward air flow pushes fume particles of this size range back toward laser cut line or sucks them up with rising air motion, thus significantly alleviating surface contamination.

Modified Scheme for Tsunami Propagation with Variable Water Depths

  • Ha, Tae-Min;Seo, Kyu-Hak;Kim, Ji-Hun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.471-476
    • /
    • 2011
  • In this study, a modified dispersion-correction scheme describing tsunami propagation on variable water depths is proposed by introducing additional terms to the previous numerical scheme. The governing equations used in previous tsunami propagation models are slightly modified to consider the effects of a bottom slope. The numerical dispersion of the proposed model replaces the physical dispersion of the governing equations. Then, the modified scheme is employed to simulate tsunami propagation on variable water depths and numerical results are compared with those of the previous tsunami propagation model.

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.