DOI QR코드

DOI QR Code

Dispersion-managed Optical Link Configured Antipodalsymmetric Dispersion Maps with Respect to Midway Optical Phase Conjugator

  • Jae-Pil Chung (Department of Electronic Engineering, Gachon University) ;
  • Seong-Real Lee (Division of Navigational Information System, Mokpo National Maritime University)
  • Received : 2023.03.10
  • Accepted : 2023.05.02
  • Published : 2023.06.30

Abstract

We investigated the antipodal-symmetric dispersion maps of a dispersion-managed link with a midway optical phase conjugator to compensate for the distorted 960 Gb/s wavelength division multiplexed (WDM) signal caused by these effects. The proposed antipodal-symmetric dispersion map has various shapes depending on the detailed design scheme. We confirmed that the dispersion-managed link designed with the dispersion map of the antipodal-symmetric structure is more advantageous than the conventional uniform dispersion map for compensating WDM channels. It was also confirmed that among the antipodal-symmetric structures, the dispersion map configured with the S-1-profile, in which S is inverted up and down, was more effective for distortion compensation than the dispersion map configured with the S-profile. In particular, we confirmed that the S-1-profile can broaden the optical pulse width intensively at a short transmission distance, more effectively compensating for the distorted WDM channel. Because this structure makes the intensity of the optical pulse relatively weak, it can decrease the nonlinear Kerr effect.

Keywords

References

  1. S. Husain, A. Kunz, and J. S. Song, "3GPP 5G core network: an overview and future directions," Journal of Information and Communication Convergence Engineering, vol. 20, no. 1, pp. 8-15, Mar. 2022. DOI: 10.6109/jicce.2022.20.1.8.
  2. B. Jung, "Request deduplication scheme in cache-enabled 5G network using PON," Journal of Information and Communication Convergence Engineering, vol. 18, no. 2, pp. 100-105, Jun. 2020. DOI: 10.6109/jicce.2020.18.2.100.
  3. T. Almeida, M. Drummond, N. Pavlovic, P. Andr'e, and R. Nogueira, "A fast method for launch parameter optimization in longhaul dispersion-managed optical links," Journal of Lightwave Technology, vol. 33, no. 20, pp. 4303-4310, Oct. 2015. DOI: 10.1109/JLT.2015.2474818.
  4. M. D. Pelusi, "WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers," IEEE Photonics Technology Letters, vol. 25, no. 1, pp. 71-74, Jan. 2013. DOI: 10.1109/LPT.2012. 2226440.
  5. D. Rafique, J. Zhao, and A. D. Ellis, "Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM mary QAM transmission," Optics Express, vol. 19, no. 6, pp. 5219-5224, Mar. 2011. DOI: 10.1364/OE.19.005219.
  6. G. Saavedra, D. Semrau, L. Galdino, R. I. Killey, and P. Bayvel, "Digital back-propagation for nonlinearity mitigation in distributed Raman amplified links," Optics Express, vol. 25, no. 5, pp. 5431-5439, Mar. 2017. DOI: 10.1364/OE.25.005431.
  7. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, "Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit," Nature Photonics, vol. 7, no. 7, pp. 560-568, Jul. 2013. DOI: 10.1038/nphoton.2013.109.
  8. S. L. I. Olsson, B. Corcoran, C. Lundstrom, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, "Phase-sensitive amplified transmission links for improved sensitivity and nonlinearity tolerance," Journal of Lightwave Technology, vol. 33, no. 3, pp. 710-721, Feb. 2015. DOI: 10.1109/JLT.2014.2367096.
  9. A. Zhou, Y. Sun, H. Triki, Y. Zhong, Z. Zeng, and M. Mirzazadeh, "Study on propagation properties of one-soliton in a multimode fiber with higher-order effects," Results in Physics, vol. 41, online, p. 105898, Oct. 2022. DOI: 10.1016/j.rinp.2022.105898.
  10. H. Hu, R. M. Jopson, A. H. Gnauck, S. Randel, and S. Chandrasekhar, "Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations," Optics Express, vol. 25, no. 3, pp. 1618-1628, Feb. 2017. DOI: 10.1364/OE.25.001618.
  11. M. Morshed, L. Bangyuan Du, and A. J. Lowery, "Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance," Journal of Lightwave Technology, vol. 31, no. 1, pp. 58-66, Jan. 2013. DOI: 10.1109/JLT.2012.2227942.
  12. M. Morshed, L. B. Du, B. Foo, M. D. Pelusi, B. Corcoran, and A. J. Lowery, "Experimental demonstrations of dual polarization COOFDM using mid-span spectral inversion for nonlinearity compensation," Optics Express, vol. 22, no. 9, pp. 10455-10466, May. 2014. DOI: 10.1364/OE.22.010455.
  13. I. Sackey, F. D. Ros, J. K. Fischer, T. Richter, M. Jazayerifar, C. Peucheret, K. Petermann, and C. Schubert, "Kerr nonlinearity mitigation: mid-link spectral inversion versus digital backpropagation in 5×28-Gps PDM 16-QAM signal transmission," Journal of Lightwave Technology, vol. 33, no. 9, pp. 1821-1827, May. 2015. DOI: 10.1109/jlt.2015.2393152.
  14. A. Yariv, D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Optics. Letter, vol. 4, issue 2, pp 52-54, Feb. 1979. DOI: 10.1364/OL.4.000052.
  15. M. Tan, P. Rosa, T. T. Nguyen, M. A. Z. Al-Khateeb, Md. A. Iqbal, T. Xu, F. Wen, J. D. Ania-Castanon, and A. D. Ellis, "Distributed Raman amplification for fiber nonlinearity compensation in a midlink optical phase conjugation system," Sensors, vol. 22, no. 3, p. 758, Jan. 2022. DOI: 10.3390/s22030758.
  16. P. M. Kaminski, F. Da Ros, P. P. Yankov, A. T. Clausen, S. Forchhammer, L. K. Oxenlowe, and M. Galili, "Symmetry enhancement through advanced dispersion mapping in OPC-aided transmission," Journal of Lightwave Technology, vol. 39, no. 9, pp. 2820-2829, May 2021. DOI: 10.1109/JLT.2021.3060548.
  17. X. Xiao, C. Yang, G. Yu, and Y. Tian, "Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry," Optics Communications, vol. 265, no. 1, pp. 326-330, Sep. 2006. DOI: 10.1016/j.optcom.2006.03.007.
  18. P. Minzioni and A. Schiffini, "Unifying theory of compensation techniques for intrachannel nonlinear effects," Optics Express, vol. 13, no. 21, pp. 8460-8468, Oct. 2005. DOI: 10.1364/ OPEX.13.008460.
  19. S. R. Lee, "Dispersion-managed optical links combined with asymmetrical optical phase conjugation for compensating for distorted WDM signals," Journal of Information and Communication Convergence Engineering, vol. 14, no. 2, pp. 71-77, Jun. 2016. DOI: 10.6109/jicce.2016.14.2.071.
  20. S. R. Lee, "Dispersion-managed links formed of SMFs and DCFs with irregular dispersion coefficients and span lengths," Journal of Information Communication Convergence Engineering, vol. 16, no. 2, pp. 67-71, Jun. 2018. DOI: 10.6109/jicce.2018.16.2.67.
  21. J. P. Chung and S. R. Lee, "Symmetric-type dispersion maps in dispersion-managed optical link with mid-span spectral inversion," Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 1, pp. 222-230, Oct. 2020. DOI: 10.11591/ijeecs.v20.i1.pp222-230.