• Title/Summary/Keyword: Dispersion coefficient

Search Result 372, Processing Time 0.035 seconds

Compensation Characteristics of WDM Signals Depending on Dispersion Coefficient of Dispersion Compensating Fiber and Residual Dispersion Per Span (분산 보상 광섬유의 분산 계수와 중계 구간 당 잉여 분산에 따른 WDM 신호의 보상 특성)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.16-23
    • /
    • 2013
  • The effects of dispersion coefficient of dispersion compensating fiber (DCF) and residual dispersion per span (RDPS) on in the dispersion managed optical links for compensating the distorted 960 Gbps wavelength division multiplexd (WDM) signals due to group velocity dispersion (GVD) and optical nonlinear effects of single mode fiber (SMF) are investigated. It is confirmed that optimal net residual dispersion (NRD), which greatly affects compensating for optical signals, should be induced under the large launch power condition, irrelevant on the considered dispersion coefficient of DCF and RDPS. It is also confirmed that system performances are greatly improved by selecting the very small RDPS and very large dispersion coefficient of DCF.

Analysis of Longitudinal Dispersion Coefficient : Part II. Development of New Dispersion Coefficient Equation (종확산계수에 관한 연구 : II. 새로운 종확산계수 추정식 개발)

  • 서일원;정태성
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.195-204
    • /
    • 1995
  • New dispersion coefficient equation which can be used to estimate dispersion coefficient by using only hydraulic data easily obtained in natural streams has been developed. Dimensional analysis was performed to select physically meaningful parameters, One-Step Huber method, which is one of the nonlinear multi-regression method, was applied to derive a regression equation of dispersion coefficient. 59 measured hydraulic data which were collected in 26 streams in the United States and were analyzed in the Part I of this study, were used in developing new dispersion coefficient equation. Among 59 measured data sets, 35 data sets were used in deriving regression equation, and 24 data sets are used for verification. The new dispersion coefficient equation, which has been developed in this study was proven to be superior in explaining dispersion characteristics of natural streams more precisely compared to existing dispersion coefficient equations.

  • PDF

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part II. Longitudinal Dispersion Coefficient (개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : II. 종분산계수)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.299-308
    • /
    • 2015
  • The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Method (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. The proposed equations for the velocity distribution and the longitudinal dispersion coefficient are verified by using observed data set. As a result, the non-dimensional longitudinal dispersion coefficient is inversely proportional to square of the Manning's roughness coefficient and the non-dimensional transverse dispersion coefficient, and is directly proportional to square of the aspect ratio (channel width to depth).

Organic Pollutant Transport in Unsaturated Porous Media by Atmospheric Breathing Process(II) Dispersion Coefficient (불포화토양에서 확산에 의한 유기오염물질의 이동)

  • 구자공;황종혁
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.79-82
    • /
    • 1997
  • 토양내에서 오염유기물질이 불포화토양내에 유입될 때의 dispersion coefficient를 adsorption과 desorption과정에 대해 알아보았다. apparent dispersion coefficient를 측정하기 위해 일상적인 상대습도(46%)조건에서 parametric analysis를 행하였다. 실험에 사용된 토양은 fine sand와 silt-clay혼합시료였고, 흐름방향은 상향과 하향으로 하였다. 그리고, Freon gas를adsorbing solute로 사용하였다. 오염물질로는 DCM, TCE, DCB를 사용하였다. 분석을 위해서 linear와 probability scale의 breakthrough curve를 사용하였다. 공기에서의 diffusion coefficient의 예측을 위하여 Graham's law를 계산에 사용하였고, DCM diffusion coefficient는 0.098$\textrm{cm}^2$/s로 계산되었다. 연구결과, adsorption과 desorption의 속도는 차이가 있는 것으로 나타났으며, diffusion이 flow regime을 좌우하는 것으로 나타났다. 그리고, desorption에서의 D$^{a}$ D$^{o}$ 는 1보다 클수도 있다. 또한, dispersion은 silt-clay혼합시료에서의 속도와 함께 증가한다. dispersion은 Freon의 sorption방향에 크게 의존한다.

  • PDF

EFFECT OF FLOW UNSTEADINESS ON DISPERSION IN NON-NEWTONIAN FLUID IN AN ANNULUS

  • NAGARANI, P.;SEBASTIAN, B.T.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.241-260
    • /
    • 2017
  • An analysis is made to study the solute transport in a Casson fluid flow through an annulus in presence of oscillatory flow field and determine how this flow influence the solute dispersion along the annular region. Axial dispersion coefficient and the mean concentration expressions are calculated using the generalized dispersion model. Dispersion coefficient in oscillatory flow is found to be a function of frequency parameter, Schmidt number, and the pressure fluctuation component besides its dependency on yield stress of the fluid, annular gap and time in the case of steady flow. Due to the oscillatory nature of the flow, the dispersion coefficient changes cyclically and the amplitude and magnitude of the dispersion increases initially with time and reaches a non - transient state after a certain critical time. This critical value varies with frequency parameter and independent of the other parameters. It is found that the presence of inner cylinder and increase in the size of the inner cylinder inhibits the dispersion process. This model may be used in understanding the dispersion phenomenon in cardiovascular flows and in particular in catheterized arteries.

Solute Transport in Rock Fractures

  • Yeo, In-Wook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.89-92
    • /
    • 2001
  • This study aims at investigating the relationship between dispersion coefficient ratio to molecular diffusion coefficient (D$_{l}$ /D$_{m}$) and Peclet number (Pe) for multi-solute system in non-Darcian flow regime. Existing understanding on solute dispersion is primarily derived from one-solute system in Darcian flow regime. We found that solute dispersion in rock fractures can be characterized by the mechanism of both macrodispersion and Taylor dispersion, even for non-Darcian f]ow domain. For the Darcian flow regime even different solutes lead to the same D$_{l}$ /D$_{m}$ at same Pe. However, as the flow becomes non-Darcian, solute with a higher molecular diffusion coefficient result in higher D$_{l}$ /D$_{m}$ at tile same Pe than that with a lower diffusion coefficient.cient.

  • PDF

The Compensation Characteristics of WDM Channel Distortion Dependence on NRZ format and RZ Format (NRZ 형식과 RZ 형식에 따른 WDM채널 왜곡의 보상 특성)

  • 이성렬;조성언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1184-1190
    • /
    • 2003
  • In this paper, we investigated the characteristics of compensation for distorted NRZ signal and RZ signal in 320 Gbps WDM system as a function of channel input power, fiber dispersion coefficient and transmission length, respectively. The considered WDM transmission system is based on mid-span spectral inversion(MSSI) compensation method having highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of total transmission line. We confirmed that the signal input power range compensated by MSSI is broadened by using RZ as a signal format in WDM system with small fiber dispersion coefficient, The range of fiber dispersion coefficient compensating overall distorted WDM channels is limited, because degree of compensation for distorted channel with low conjugated-wave power becomes gradually degrade as fiber dispersion coefficient becomes gradually higher. It is showed that RZ format and NRZ format is suited for long-haul transmission in WDM system with small fiber dispersion coefficient and with large fiber dispersion coefficient, respectively.

Dispersion-Managed Links Formed of SMFs and DCFs with Irregular Dispersion Coefficients and Span Lengths

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • The various techniques to compensate for the signal distortion due to the group velocity dispersion (GVD) and nonlinear Kerr effects of optical fibers in the optical links have been proposed in the literature. We propose a flexible dispersion-managed link configuration consisted of single-mode and dispersion-compensating fibers with irregular dispersion coefficients over all fiber spans, and an optical phase conjugator added midway along the optical links. By distributing the lengths of the single mode fibers, we achieve a flexible optical link. The simultaneous ascending and descending distribution of the single-mode fiber lengths before and after the optical phase conjugator, respectively, best compensates the distorted wavelength division multiplexed signals in the optical link with non-fixed coefficients. Our result is consistent with those of our previous work on fixed coefficients. Therefore, to improve the compensation at any magnitude of dispersion coefficient, we must artificially distribute the lengths of the single-mode fibers into a dispersion-managed link.

Analysis of Behavior Characteristics of Instantaneous Input of Pollutant in River (하천에 순간 유입된 오염물질의 거동 특성 분석)

  • Yoon, Sei-Eui;Ko, Jae-Hyung;Kim, Soo-Youl
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.575-586
    • /
    • 2003
  • In case of continuous input of a pollutant, dispersion characteristics do not change much with changing dispersion coefficient, but that of an instantaneous input is very sensitive to the changes of dispersion coefficient. The characteristics of behavior of instantaneous input of a pollutant at the downstream of Han river were analyzed in this paper Field measurement of hydraulic and water quality factors at the downstream of Han river were conducted at low flow condition. The hydraulic factors were used to estimate the longitudinal dispersion coefficient, and the reasonable empirical equations for longitudinal dispersion coefficient at the downstream of Han river were suggested. The measured concentrations of BOD were closely matched with the calculated ones from RMA-4 model. In case of instantaneous input, range of dispersion, transport pathway and the traveltimes of the first and maximum concentration with variation of the longitudinal dispersion coefficients and water levels of downstream boundary were evaluated in this paper.

Dispersion of Nonconservative Contaminants Accidentally Released into Natural Streams (사고에 의하여 자연하천으로의 방류된 비보존성 오염물질의 종확산)

  • Jo, Seong-U;Jeon, Gyeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.289-301
    • /
    • 2001
  • A fractional step finite difference model for the longitudinal dispersion of nonconservative pollutants is applied to the Nakdong River to simulate the phenol spill accident which occurred on March, 1971. Prior to the dispersion calculation, the flow conditions are simulated to provide inputs to the dispersion model. An unsteady flow model based on Preissmann's four-point scheme is used for this purpose. Sensitivities of the dispersion calculation to empirical equations for dispersion coefficient and to the first-order decay coefficient are analyzed. The time to peak concentration at a downstream location is significantly different depending on the formula for the dispersion coefficient. Although the decay coefficient does not affect the shape of the temporal concentration distribution, the concentration values depend on the decay coefficient verb significantly. An optimization technique is used to calibrate the dispersion model as well as the flow model. The time to the peak concentration is simulated for major positions of water intake along the Nakdong River.

  • PDF