• Title/Summary/Keyword: Disease prediction

Search Result 555, Processing Time 0.024 seconds

Discriminant Modeling for Pattern Identification Using the Korean Standard PI for Stroke-III (한국형 중풍변증 표준 III을 이용한 변증진단 판별모형)

  • Kang, Byoung-Kab;Ko, Mi-Mi;Lee, Ju-Ah;Park, Tae-Yong;Park, Yong-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1113-1118
    • /
    • 2011
  • In this paper, when a physician make a diagnosis of the pattern identification (PI) in Korean stroke patients, the development methods of the PI classification function is considered by diagnostic questionnaire of the PI for stroke patients. Clinical data collected from 1,502 stroke patients who was identically diagnosed for the PI subtypes diagnosed by two physicians with more than 3 years experiences in 13 oriental medical hospitals. In order to develop the classification function into PI using Korean Stroke Syndrome Differentiation Standard was consist of the 44 items (Fire heat(19), Qi deficiency(11), Yin deficiency(7), Dampness-phlegm(7)). Using the 44 items, we took diagnostic and prediction accuracy rate through of discriminant model. The overall diagnostic and prediction accuracy rate of the PI subtypes for discriminant model was 74.37%, 70.88% respectively.

A Study on Disease Prediction of Paralichthys Olivaceus using Deep Learning Technique (딥러닝 기술을 이용한 넙치의 질병 예측 연구)

  • Son, Hyun Seung;Lim, Han Kyu;Choi, Han Suk
    • Smart Media Journal
    • /
    • v.11 no.4
    • /
    • pp.62-68
    • /
    • 2022
  • To prevent the spread of disease in aquaculture, it is a need for a system to predict fish diseases while monitoring the water quality environment and the status of growing fish in real time. The existing research in predicting fish disease were image processing techniques. Recently, there have been more studies on disease prediction methods through deep learning techniques. This paper introduces the research results on how to predict diseases of Paralichthys Olivaceus with deep learning technology in aquaculture. The method enhances the performance of disease detection rates by including data augmentation and pre-processing in camera images collected from aquaculture. In this method, it is expected that early detection of disease fish will prevent fishery disasters such as mass closure of fish in aquaculture and reduce the damage of the spread of diseases to local aquaculture to prevent the decline in sales.

Modeling for Prediction of the Turnip Mosaic Virus (TuMV) Progress of Chinese Cabbage (배추 순무모자이크바이러스(TuMV)병 진전도 예측모형식 작성)

  • 안재훈;함영일
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 1998
  • To develop a model for prediction of turnip mosaic virus(TuMV) disease progress of Chinese cabbage based on weather information and number of TuMV vector aphids trapped in Taegwallyeong alpine area, data were statistically processed together. As the variables influenced on TuMV disease progress, cumulative portion(CPT) above 13$^{\circ}C$ in daily average temperature was the most significant, and solar radiation, duration of sunshine, vector aphids and cumulative temperature above $0^{\circ}C$ were significant. When logistic model and Gompertz model were compared by detemining goodness of fit for TuMV disease progress using CPT as independent variable, regression coefficient was higher in the logistic model than in the Gompertz model. Epidemic parameters, apparent infection rate and initial value of logistic model, were estimated by examining the relationship between disease proportion linearized by logit transformation equation, In(Y/Yf-Y) and CPT. Models able to describe the progression of TuMV disease were formulated in Y=100/(1+128.4 exp(-0.013.CPT.(-1(1/(1+66.7.exp(-0.11.day). Calculated disease progress from the model was in good agreement with investigated actual disease progress showing high significance of the coefficient of determination with 0.710.

  • PDF

Comparison of Machine Learning Methodology in COPD Cohort Data (COPD 코호트 자료에서의 Machine Learning 방법론 비교)

  • Jeong, Hyeon-Myeong;Park, Heon-Jin;Rhee, Chin-Kook;Lee, Jong-min
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.115-128
    • /
    • 2017
  • Recently, Machine Learning Methods are widely used with high prediction performance. But if the limit of the data is solved by the statistical technique, It can, lead to higher prediction performance than the existing one. In this study, the SMOTE method is used to solve the imbalance problem in the longitudinal and imbalanced data. As a result, It, was confirmed that the prediction performance increases. Additionally, Although, studies on COPD have been actively conducted, only studies that are related to acute exacerbation have been conducted. So there are no studies on the prediction of acute exacerbation through multiple perspectives and predictive models for various factors. In this study, We examined the factors related to acute exacerbation of COPD and constructed a personalized specific disease prediction model.

  • PDF

Application of Pharmacovigilance Methods in Occupational Health Surveillance: Comparison of Seven Disproportionality Metrics

  • Bonneterre, Vincent;Bicout, Dominique Joseph;De Gaudemaris, Regis
    • Safety and Health at Work
    • /
    • v.3 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • Objectives: The French National Occupational Diseases Surveillance and Prevention Network (RNV3P) is a French network of occupational disease specialists, which collects, in standardised coded reports, all cases where a physician of any specialty, referred a patient to a university occupational disease centre, to establish the relation between the disease observed and occupational exposures, independently of statutory considerations related to compensation. The objective is to compare the relevance of disproportionality measures, widely used in pharmacovigilance, for the detection of potentially new disease ${\times}$ exposure associations in RNV3P database (by analogy with the detection of potentially new health event ${\times}$ drug associations in the spontaneous reporting databases from pharmacovigilance). Methods: 2001-2009 data from RNV3P are used (81,132 observations leading to 11,627 disease ${\times}$ exposure associations). The structure of RNV3P database is compared with the ones of pharmacovigilance databases. Seven disproportionality metrics are tested and their results, notably in terms of ranking the disease ${\times}$ exposure associations, are compared. Results: RNV3P and pharmacovigilance databases showed similar structure. Frequentist methods (proportional reporting ratio [PRR], reporting odds ratio [ROR]) and a Bayesian one (known as BCPNN for "Bayesian Confidence Propagation Neural Network") show a rather similar behaviour on our data, conversely to other methods (as Poisson). Finally the PRR method was chosen, because more complex methods did not show a greater value with the RNV3P data. Accordingly, a procedure for detecting signals with PRR method, automatic triage for exclusion of associations already known, and then investigating these signals is suggested. Conclusion: This procedure may be seen as a first step of hypothesis generation before launching epidemiological and/or experimental studies.

Corelationship Study between Hwa-Byung and Coronary Heart Disease, by using Framingham Coronary Risk Score (Framingham Coronary Risk Score를 이용한 화병과 심혈관계 질환과의 관련성 연구)

  • Jeong, Ha-Ryong;Koh, Sang-Baek;Park, Jong-Ku;Yu, Jun-Sang;Lee, Jae-Hyok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.22 no.3
    • /
    • pp.13-22
    • /
    • 2011
  • Objectives : This study was to research the relationship between Hwa-Byung and Framingham coronary risk score(FRS), cardiovascular disease. Methods : 649 people participated in the community based cohort study in Wonju City of South Korea from July 2nd to August 30th in 2006. Educated investigators checked up systolic & diastolic blood pressure and surveyed Hwa-Byung Diagnostic Interview Schedule(HBDIS), cohort questionnaire about gender, age, smoking, diabetes. Blood sample was collected from participants to analyze total cholesterol, HDL-cholesterol. FRS was calculated from collected data. 10-year prediction of coronary heart disease was determined from FRS by using score sheet that is estimated by Wilson et al. Collected data were analyzed by the chi-square test. Results : 1. Low risk number of people was 18(52.9%) in Hwa-Byung group, 263(42.8%) in non Hwa-Byung group. p-value was 0.472. Difference of the two group was invalid. 2. The number of people below or equal to average 10-year prediction of coronary heart disease as gnder & age, Hwa-Byung group was 19(55.9%), non Hwa-Byung group was 412(67.0%). p-value was 0.251. Difference of the two group was invalid. Conclusions : There was no correlationship Between Hwa-Byung and 10-year prediction of coronary heart disease.

Factors Influencing Development and Severity of Grey Leaf Spot of Mulberry (Morus spp.)

  • Kumar, Punathil Meethal Pratheesh;Qadri, Syed Mashayak Hussaini;Pal, Susil Chandra
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.1
    • /
    • pp.11-15
    • /
    • 2011
  • Impact of pruning date, shoot age and weather parameters on the severity and development of grey leaf spot (Pseudocercospora mori) of mulberry was studied. The disease severity (%) increased with increase in shoot age irrespective of pruning date. Maximum disease severity was observed in plants pruned during second week of October and minimum in plants pruned during last week of December. Significant (P<0.05) influence of date of pruning, shoot age and their interaction was observed on the severity of the disease. Apparent infection rate (r) was significantly higher during plant growth period from day-48 to day-55. Average apparent rate was higher in plants pruned during first week of September and least in plants pruned during third and fourth week of December. Multiple regression analysis revealed contribution of various combinations of weather parameters on the disease severity. A linear prediction model [$Y=66.05+(-1.39)x_1+(-0.219)x_4$] with significant $R^2$ was developed for prediction of the disease under natural epiphytotic condition.

The Investigation of Employing Supervised Machine Learning Models to Predict Type 2 Diabetes Among Adults

  • Alhmiedat, Tareq;Alotaibi, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2904-2926
    • /
    • 2022
  • Currently, diabetes is the most common chronic disease in the world, affecting 23.7% of the population in the Kingdom of Saudi Arabia. Diabetes may be the cause of lower-limb amputations, kidney failure and blindness among adults. Therefore, diagnosing the disease in its early stages is essential in order to save human lives. With the revolution in technology, Artificial Intelligence (AI) could play a central role in the early prediction of diabetes by employing Machine Learning (ML) technology. In this paper, we developed a diagnosis system using machine learning models for the detection of type 2 diabetes among adults, through the adoption of two different diabetes datasets: one for training and the other for the testing, to analyze and enhance the prediction accuracy. This work offers an enhanced classification accuracy as a result of employing several pre-processing methods before applying the ML models. According to the obtained results, the implemented Random Forest (RF) classifier offers the best classification accuracy with a classification score of 98.95%.

Disease Prediction Using Ranks of Gene Expressions

  • Kim, Ki-Yeol;Ki, Dong-Hyuk;Chung, Hyun-Cheol;Rha, Sun-Young
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.136-141
    • /
    • 2008
  • A large number of studies have been performed to identify biomarkers that will allow efficient detection and determination of the precise status of a patient’s disease. The use of microarrays to assess biomarker status is expected to improve prediction accuracies, because a whole-genome approach is used. Despite their potential, however, patient samples can differ with respect to biomarker status when analyzed on different platforms, making it more difficult to make accurate predictions, because bias may exist between any two different experimental conditions. Because of this difficulty in experimental standardization of microarray data, it is currently difficult to utilize microarray-based gene sets in the clinic. To address this problem, we propose a method that predicts disease status using gene expression data that are transformed by their ranks, a concept that is easily applied to two datasets that are obtained using different experimental platforms. NCI and colon cancer datasets, which were assessed using both Affymetrix and cDNA microarray platforms, were used for method validation. Our results demonstrate that the proposed method is able to achieve good predictive performance for datasets that are obtained under different experimental conditions.

Cost-Sensitive Learning for Cardio-Cerebrovascular Disease Risk Prediction (심혈관질환 위험 예측을 위한 비용민감 학습 모델)

  • Yu Na Lee;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.161-168
    • /
    • 2021
  • In this study, we propose a cardiovascular disease prediction model using machine learning. First, a multidimensional analysis of various differences between the two groups is performed and the results are visualized. In particular, we propose a predictive model using cost-sensitive learning that can improve the sensitivity for cases where there is a high class imbalance between the normal and patient groups, such as diseases. In this study, a predictive model is developed using CART and XGBoost, which are representative machine learning technologies, and prediction and performance are compared for cardiovascular disease patient data. According to the study results, CART showed higher accuracy and specificity than XGBoost, and the accuracy was about 70% to 74%.