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Abstract
A large number of studies have been performed to iden-
tify biomarkers that will allow efficient detection and de-
termination of the precise status of a patient’s disease. 
The use of microarrays to assess biomarker status is 
expected to improve prediction accuracies, because a 
whole-genome approach is used. Despite their potential, 
however, patient samples can differ with respect to bio-
marker status when analyzed on different platforms, 
making it more difficult to make accurate predictions, 
because bias may exist between any two different ex-
perimental conditions. Because of this difficulty in ex-
perimental standardization of microarray data, it is cur-
rently difficult to utilize microarray-based gene sets in 
the clinic. To address this problem, we propose a meth-
od that predicts disease status using gene expression 
data that are transformed by their ranks, a concept that 
is easily applied to two datasets that are obtained using 
different experimental platforms. NCI and colon cancer 
datasets, which were assessed using both Affymetrix 
and cDNA microarray platforms, were used for method 
validation. Our results demonstrate that the proposed 
method is able to achieve good predictive performance 
for datasets that are obtained under different ex-
perimental conditions.
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Introduction
To identify disease-specific genes, numerous datasets 
have been created under different experimental con-
ditions at different laboratories, albeit for the same 
purpose. Many aspects of these results, which have 
been derived from different datasets, are inconsistent, 

even though the datasets were created with the same 
objective using the same or similar technical platforms. 
Therefore, methods to integrate the results from different 
datasets (Moreau, et al., 2003; Rhodes, et al., 2002) as 
well as methods to combine datasets prior to analysis 
have been studied (Jiang, et al., 2004; Kim, et al., 2007; 
Lee, et al., 2004). Such studies have shown that reliable 
results can be obtained by integrating results that are 
derived from different datasets and analyzing the com-
bined datasets, as long as an increasing number of 
samples are utilized. The use of categorized values of 
gene expression ratios may improve prediction accu-
racies with respect to classification of different ex-
perimental datasets (Huan et al., 2002). One approach 
that has been suggested is the discretization of gene 
expression levels (George et al., 2004). This method di-
vides continuous gene expression levels into several 
categories, and, as a result, the bias that can exist be-
tween different microarray datasets is minimized.
  Properly developed integration approaches should 
help identify biomarkers to classify specific diseases 
based on high-throughput data. However, when a pa-
tient’s sample is evaluated to determine his/her dis-
ease status using more than one experimental condition 
relative to a determined biomarker set, correct pre-
diction becomes impossible. Furthermore, methods to 
predict the disease status of a patient using biomarkers 
that initially are identified under different conditions than 
those that are used for the patient analysis have not 
been developed.
  This study suggests a method that can accurately 
predict the disease status of a patient using a pre-
determined biomarker that is developed on a different 
platform. Specifically, we performed a two-step dis-
cretization of gene expression values by their rank, 
which were processed in both the biomarker selection 
and prediction stages.

Methods

Datasets

To evaluate our proposed method, we used two differ-
ent datasets: the NCI dataset (Lee, et al., 2003) and the 
colon cancer dataset (Kim, et al., 2007; Notterman, et 
al., 2001). Both of these datasets include gene ex-
pression information that was determined experimentally 
using two different microarray platforms (oligonucleo-
tide-based and cDNA-based). There are a large number 
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Fig. 1. Summary of the process

for gene selection and prediction. 

D-Train data: discretized train 

dataset by rank; D-Test data: 

discretized test dataset by rank 

for each experiment.

Table 1. Summary of datasets

Data name Experimental platform # of genes # of total samples Group A Group B

Colon cancer dataset Colon normal Colon tumor

  Kim et al., 2007 cDNA 12,319 78 35 43

  Notterman et al., 2001 Affymetrix HU6800  7,464 36 18 18

NCI dataset Ovarian cancer Colon cancer

  Lee JK et al., 2003 cDNA  2,344 13  6  7

Affymetrix HU6800  2,344 13  6  7

of cancer tissue types in the NCI dataset; however, we 
used only the expression data of ovarian cancer and 
colon cancer tissues in this study. The datasets that 
were used in this study are summarized in Table 1.

Selection of significant gene sets from the train-
ing dataset

For transformation of the dataset, gene expression ra-
tios were ranked in order of expression ratio for each 
gene, and the ranks were matched with the correspond-
ing experimental group. This process is similar to the 
first step of the nonparametric Mann-Whitney U test. 
The steps that were used to discretize gene expression 
levels are summarized below:
  (1) Gene expression ratios were ranked for every 

gene in each dataset that had more than two ex-
perimental groups.

  (2) The rank and assignment order based on gene 
expression were listed for corresponding ex-
perimental groups.

  (3) The results of (2) were summarized in the form of 
a contingency table for each gene.

  (4) The relationship between gene expression patterns 
and experimental groups for each gene was 
tested.

  (5) The discriminative gene set was selected by meas-

uring statistical significance.

Disease status prediction for a new patient us-
ing the selected discriminative gene set

The test dataset was predicted using the selected dis-
criminative gene set as follows:
  (1) Gene expression ratios were re-ranked within each 

experiment in the discriminative gene set. 
  (2) A predictor was created by using the re-ranked 

discriminative gene set in (1). 
  (3) Gene expression ratios of the test sample to be 

predicted were ranked. 
  (4) The prediction accuracy of the ranked test dataset 

was calculated using the predictor created in step 
(2).

  The processes for significant gene selection and dis-
ease prediction (B and C) were summarized in Fig. 1.

Statistical analysis

After the gene expression ratios were summarized in the 
form of a contingency table for each gene, a non-
parametric statistical method was applied to the data-
sets to test independency between gene expression 
patterns and experimental groups. The Kruskal-Wallis 
test and Fisher’s exact test were used for continuous 
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Fig. 3. Comparison of the OOB error rates (A) and prediction accuracies (B) for the NCI dataset. cDNA and Oligo datasets 

were used for training and testing, respectively. 

Fig. 2. Comparison of the OOB error rates (A) and prediction accuracies (B) for the NCI dataset. Oligo and cDNA datasets 

were used for training and testing, respectively. 

gene expression and the discretized dataset, respec-
tively. To evaluate the predictive accuracy of the se-
lected significant gene set, the Random Forest (RF) test 
was used to enable re-sampling while still allowing for 
repetition (Breiman, 2001). We used the RF program in 
the R package (http://www.r-project.org) and calculated 
OOB (Out Of Bag) error and prediction accuracy as 
well.
  We compared the prediction accuracies when real 
gene expression values were used and when the ranks 
of gene expression values were used. These two ap-
proaches can be summarized as follows.
  (1) Method 1: Gene expression values were used for 

gene selection and prediction stages, and OOB 
error rate and prediction accuracy were calculated 
(OOB_raw data, Prediction_raw data).

  (2) Method 2: During the gene selection and prediction 
stages, the ranks of gene expression were used 
(OOB_rank, Prediction_rank); this is the proposed 
method.

Results and Discussion
The OOB error rates and the prediction accuracies were 
compared for the two different approaches-namely, raw 
data versus rank data. In the NCI dataset, the prediction 
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Fig. 5. Comparison of the OOB error rates (A) and prediction accuracies (B) for the colon dataset. cDNA and Oligo datasets

were used for training and testing, respectively. 

Fig. 4. Comparison of the OOB error rates (A) and prediction accuracies (B) for the colon dataset. Oligo and cDNA datasets

were used for training and testing, respectively. 

accuracy was improved by using rank data (p=0.052275); 
however, the OOB error rate was significantly higher 
(p=0.037566) (Fig. 2). 
  We next compared the OOB error and prediction ac-
curacy for the cDNA and Oligo datasets when they were 
used as training and testing sets, respectively. While the 
OOB error rate was not significantly different from the 
results in Fig. 3A (p=0.277), the prediction accuracy of 
the proposed method was significantly higher (p=4.57E- 
12) (Fig. 3B). In addition, the OOB error rate was almost 
0 when the cDNA dataset was used as the training da-
taset (Fig. 3A). In contrast, the OOB error rates were 
high for both of the approaches when the Oligo dataset 
was used for training (Fig. 2A). Nevertheless, the pre-

diction accuracies did not exhibit dependency on the 
OOB error rate (Fig. 2B, 3B).
  In the NCI dataset, the fixed prediction accuracy was 
determined for the case when gene expression levels 
were used for both gene selection and prediction. This 
result indicated that all 13 tissues were classifiable into 
either the ovarian or colon cancer groups. By scaling 
the difference in gene expression between the training 
and testing datasets, the biomarker that was selected 
from the training dataset was not an accurate predictor 
of disease status when it was applied to the test 
dataset. In contrast, the prediction accuracy of the bio-
marker was improved when the discretized dataset was 
used for prediction. This result can be interpreted to 
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mean that the use of ranks compensated for the influ-
ence that different platforms had on prediction. Further, 
the prediction accuracy did not exhibit dependency on 
the number of significant genes. For this comparison, 
the significant genes were added one by one according 
to their level of significance. The fluctuation in prediction 
accuracies can be interpreted to mean that the added 
genes shuffled the order of gene expression and af-
fected predictability. Our results clearly showed that the 
use of data that were discretized by rank was more ef-
fective when the cDNA dataset was used for training 
(Fig. 3) rather than when the Oligo dataset was used 
(Fig. 2).
  For the colon cancer dataset, there was no sig-
nificantly different OOB error rate between the two 
methods (p=0.33) (Fig. 4A). However, the prediction ac-
curacy was significantly higher when the proposed 
method was used (p=0.0118) (Fig. 4B).
  While the OOB error rate for the colon dataset was 
significantly different (p=0.0260) (Fig. 5A), the prediction 
accuracy was not (p=0.611) (Fig. 5B). As shown in Fig. 
5A, the OOB error rate was significantly different by ap-
proximately 25 genes, becoming very similar afterward. 
Therefore, the significant OOB error rate was likely due 
to the differences that were observed within this range. 
However, the non-significance of the prediction accu-
racy could have been due to the very low prediction ac-
curacies of the proposed method in this range (Fig. 5B). 
  The OOB error rate was slightly lower when the cDNA 
dataset was used as the training dataset; however, sim-
ilar to what was observed for the NCI dataset, the pre-
diction accuracy was not dependent on the OOB error 
rate. When the Oligo dataset was used as the training 
dataset and more than 25 to 30 significant genes were 
used, the proposed method exhibited good performance 
with respect to prediction accuracy (Fig. 4). However, 
there was some fluctuation in prediction accuracy when 
the cDNA dataset was used as the training dataset. 
Further, when the real gene expression levels were 
used, all tissues were classifiable into one of two 
classes, normal and tumor, which also was observed for 
the NCI dataset.
  The use of biomarkers that are identified using micro-
arrays can be expected to improve the prediction accu-
racies for a given disease status. However, when a 
sample from a patient is analyzed on a different ex-
perimental platform than that used to analyze the bio-
marker, it becomes difficult to make an accurate pre-
diction of disease status, because bias can be gen-
erated when analyzing two different types of samples. 
Therefore, we developed a method to correctly predict 
disease status even when the new sample is analyzed 
on a different platform than that originally used to iden-

tify the biomarker.
  In the NCI dataset, we found that it was effective to 
use the discretized value to select significant genes and 
make predictions; however, large variations in prediction 
accuracies were observed as the number of genes 
increased. This result likely was due to the fact that the 
NCI dataset contains a small number of samples, and 
thus misclassification of even one sample may impact 
the prediction accuracy. The prediction accuracy could 
be decreased by adding redundant genes when the 
number of genes is increased according to their 
significance.
  Though the prediction accuracy of the proposed 
method was higher than the previous method that used 
continuous gene expression, it was not affected by the 
number of significant genes. Specifically, when the 
cDNA dataset was used as the training dataset, the 
OOB error rate was almost 0 and the selected gene set 
exhibited good predictive performance. This result in-
dicates that the high and stable prediction accuracy 
was due to a reliably selected biomarker (Fig. 3).
  In the colon cancer dataset, OOB error rates were 
low in both cases (Fig. 4A, 5A). While the prediction ac-
curacy was improved by the proposed method when 
the Oligo dataset was used for training, it was not use-
ful when the cDNA dataset was used for training.
  For both datasets, the OOB error rates were lower 
and more stable when the cDNA dataset was used as 
the training dataset rather than the Oligo dataset. 
Further, if fewer than 50 significant genes were consid-
ered, the proposed method exhibited good performance 
for prediction of Oligo data with cDNA data, and vice 
versa.
  For prediction of a new patient’s disease status using 
biomarkers, the patient’s sample should be analyzed 
using the same platform that was used to develop the 
biomarker to avoid bias and inaccurate results. 
However, this ideal situation is not always possible, and 
thus a reliable method to analyze data is needed for 
cases when the biomarker and patient sample have 
been processed on different platforms. The proposed 
method, which is capable of handling such an analysis, 
does so by transforming the gene expression values of 
a training dataset into discretized values and then se-
lecting discriminative genes from the resulting dis-
cretized dataset. 
  Using the process that is outlined in this paper, the 
disease status of a patient can be predicted more reli-
ably using a biomarker that is developed on a platform 
different to what was used to analyze the patient's 
sample. During the prediction stage, we transformed the 
selected significant genes by rank. By comparing the 
predictive accuracy of the number of significant genes, 
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we expect that a stably discriminative gene set that has 
a high predictive capacity can be produced. 
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