• Title/Summary/Keyword: Disease modeling

Search Result 266, Processing Time 0.028 seconds

Metabolic Pathways Associated with Kimchi, a Traditional Korean Food, Based on In Silico Modeling of Published Data

  • Shin, Ga Hee;Kang, Byeong-Chul;Jang, Dai Ja
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.222-229
    • /
    • 2016
  • Kimchi is a traditional Korean food prepared by fermenting vegetables, such as Chinese cabbage and radishes, which are seasoned with various ingredients, including red pepper powder, garlic, ginger, green onion, fermented seafood (Jeotgal), and salt. The various unique microorganisms and bioactive components in kimchi show antioxidant activity and have been associated with an enhanced immune response, as well as anti-cancer and anti-diabetic effects. Red pepper inhibits decay due to microorganisms and prevents food from spoiling. The vast amount of biological information generated by academic and industrial research groups is reflected in a rapidly growing body of scientific literature and expanding data resources. However, the genome, biological pathway, and related disease data are insufficient to explain the health benefits of kimchi because of the varied and heterogeneous data types. Therefore, we have constructed an appropriate semantic data model based on an integrated food knowledge database and analyzed the functional and biological processes associated with kimchi in silico. This complex semantic network of several entities and connections was generalized to answer complex questions, and we demonstrated how specific disease pathways are related to kimchi consumption.

Analysis of SEER Glassy Cell Carcinoma Data: Underuse of Radiotherapy and Predicators of Cause Specific Survival

  • Cheung, Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.353-356
    • /
    • 2016
  • Background: This study used receiver operating characteristic curve to analyze Surveillance, Epidemiology and End Results (SEER) for glassy cell carcinoma data to identify predictive models and potential disparities in outcome. Materials and Methods: This study analyzed socio-economic, staging and treatment factors. For risk modeling, each factor was fitted by a generalized linear model to predict the cause specific survival. Area under the receiver operating characteristic curves (ROCs) were computed. Similar strata were combined to construct the most parsimonious models. A random sampling algorithm was used to estimate modeling errors. Risk of glassy cell carcinoma death was computed for the predictors for comparison. Results: There were 79 patients included in this study. The mean follow up time (S.D.) was 37 (32.8) months. Female patients outnumbered males 4:1. The mean (S.D.) age was 54.4 (19.8) years. SEER stage was the most predictive factor of outcome (ROC area of 0.69). The risks of cause specific death were, respectively, 9.4% for localized, 16.7% for regional, 35% for the un-staged/others category, and 60% for distant disease. After optimization, separation between the regional and unstaged/others category was removed with a higher ROC area of 0.72. Several socio-economic factors had small but measurable effects on outcome. Radiotherapy had not been used in 90% of patients with regional disease. Conclusions: Optimized SEER stage was predictive and useful in treatment selection. Underuse of radiotherapy may have contributed to poor outcome.

Epidemic Disease Spreading Simulation Model Based on Census Data (센서스 데이터를 기반으로 만든 전염병 전파 시뮬레이션 모델)

  • Hwang, Kyosang;Lee, Taesik;Lee, Hyunrok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Epidemic models are used to analyze the spreading of epidemic diseases, estimate public health needs, and assess the effectiveness of mitigation strategies. Modeling scope of an epidemic model ranges from the regional scale to national and global scale. Most of the epidemic models developed in Korea are at the national scale using the equation-based model. While these models are useful for designing and evaluating national public health policies, they do not provide sufficient details. As an alternative, individual-based models at the regional scale are often used to describe disease spreading, so that various mitigation strategies can be designed and tested. This paper presents an individual-based epidemic spreading model at regional scale. This model incorporates 2005 census data to build the synthetic population in the model representing Daejeon in 2005. The model's capability is demonstrated by an example where we assess the effectiveness of several mitigation strategies using the model.

Intestinal organoids as advanced modeling platforms to study the role of host-microbiome interaction in homeostasis and disease

  • Ji-Su Ahn;Min-Jung Kang;Yoojin Seo;Hyung-Sik Kim
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • After birth, animals are colonized by a diverse community of microorganisms. The digestive tract is known to contain the largest number of microbiome in the body. With emergence of the gut-brain axis, the importance of gut microbiome and its metabolites in host health has been extensively studied in recent years. The establishment of organoid culture systems has contributed to studying intestinal pathophysiology by replacing current limited models. Owing to their architectural and functional complexity similar to a real organ, co-culture of intestinal organoids with gut microbiome can provide mechanistic insights into the detrimental role of pathobiont and the homeostatic function of commensal symbiont. Here organoid-based bacterial co-culture techniques for modeling host-microbe interactions are reviewed. This review also summarizes representative studies that explore impact of enteric microorganisms on intestinal organoids to provide a better understanding of host-microbe interaction in the context of homeostasis and disease.

Electrophysiological insights with brain organoid models: a brief review

  • Rian Kang;Soomin Park;Saewoon Shin;Gyusoo Bak;Jong-Chan Park
    • BMB Reports
    • /
    • v.57 no.7
    • /
    • pp.311-317
    • /
    • 2024
  • Brain organoid is a three-dimensional (3D) tissue derived from stem cells such as induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) that reflect real human brain structure. It replicates the complexity and development of the human brain, enabling studies of the human brain in vitro. With emerging technologies, its application is various, including disease modeling and drug screening. A variety of experimental methods have been used to study structural and molecular characteristics of brain organoids. However, electrophysiological analysis is necessary to understand their functional characteristics and complexity. Although electrophysiological approaches have rapidly advanced for monolayered cells, there are some limitations in studying electrophysiological and neural network characteristics due to the lack of 3D characteristics. Herein, electrophysiological measurement and analytical methods related to neural complexity and 3D characteristics of brain organoids are reviewed. Overall, electrophysiological understanding of brain organoids allows us to overcome limitations of monolayer in vitro cell culture models, providing deep insights into the neural network complex of the real human brain and new ways of disease modeling.

Semantic Modeling for SNPs Associated with Ethnic Disparities in HapMap Samples

  • Kim, HyoYoung;Yoo, Won Gi;Park, Junhyung;Kim, Heebal;Kang, Byeong-Chul
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Single-nucleotide polymorphisms (SNPs) have been emerging out of the efforts to research human diseases and ethnic disparities. A semantic network is needed for in-depth understanding of the impacts of SNPs, because phenotypes are modulated by complex networks, including biochemical and physiological pathways. We identified ethnicity-specific SNPs by eliminating overlapped SNPs from HapMap samples, and the ethnicity-specific SNPs were mapped to the UCSC RefGene lists. Ethnicity-specific genes were identified as follows: 22 genes in the USA (CEU) individuals, 25 genes in the Japanese (JPT) individuals, and 332 genes in the African (YRI) individuals. To analyze the biologically functional implications for ethnicity-specific SNPs, we focused on constructing a semantic network model. Entities for the network represented by "Gene," "Pathway," "Disease," "Chemical," "Drug," "ClinicalTrials," "SNP," and relationships between entity-entity were obtained through curation. Our semantic modeling for ethnicity-specific SNPs showed interesting results in the three categories, including three diseases ("AIDS-associated nephropathy," "Hypertension," and "Pelvic infection"), one drug ("Methylphenidate"), and five pathways ("Hemostasis," "Systemic lupus erythematosus," "Prostate cancer," "Hepatitis C virus," and "Rheumatoid arthritis"). We found ethnicity-specific genes using the semantic modeling, and the majority of our findings was consistent with the previous studies - that an understanding of genetic variability explained ethnicity-specific disparities.

Design and embodiment about pulse modeling of light investigation for disease treatment by skin color (피부색에 따른 병변치료를 위한 광조사펄스모델링에 대한 설계 및 구현)

  • Kim, Whi-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.563-572
    • /
    • 2006
  • Advantage that light transmission treatment way of most suitable through skin can investigate light directly in part ar there is difference in ability photoelectricity month by diverse complexion of horn character department which is branch or head of a family outside part of skin and treatment according to various patient can be inappropriate. By result that this research uses color information after search each color ingredient that ingredient of HIS and YIQ that use method, color information to use skin impedance way and color information through skin area ion and difference video to do fixed measuring by light investigation way by skin impedance corresponds to skin color in an experiment though is most universal result according to patient's skin model area detection each single person's skin model through videotex automatically create and because measuring, investigate skin color, energy, wave length, approximately, transmission time, model of most suitable that draw pulse delay and so on and want and special quality, and saved standard of disease treatment pulse modeling by skin impedance, and design and manufacture light investigation pulse modeling system of most suitable by skin subordinate, and constructed suitable treatment pulse database by skin color.

  • PDF

Socio-National Issues Detection Modeling based on Domain Knowledge - Focusing on the Issue of Increase in Domestic Inflow Infectious Diseases (도메인 지식 기반 이슈 탐지 모델링 - 해외 발생 감염병 국내 유입 이슈를 중심으로)

  • Hwang, Mi-Nyeong;Lee, Seungwoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.158-168
    • /
    • 2017
  • As the big data technologies advance, there is an increasing interest in systematic methodologies for data-based policy determination especially in the public health area. This study proposes a method to develop an issue detection model through the collaboration with domain experts in order to intelligently detect major socio-national issues on infectious diseases based on data. At first, the factors influencing the 'domestic inflow of foreign infectious diseases' are determined and variables representing the factors are set. Thereafter, by using system dynamics methods, the causal analysis is made to find causal map indicating main influential factors. In this process, an empirical modeling is conducted through collaboration between data analysts and experts in the infectious disease domain. The proposed issue detection approach based on domain knowledges will make it possible to make a decision on policies more efficiently if the detection system is capable of continuos monitoring of the related issues.

Evaluation of Related Risk Factors in Number of Musculoskeletal Disorders Among Carpet Weavers in Iran

  • Karimi, Nasim;Moghimbeigi, Abbas;Motamedzade, Majid;Roshanaei, Ghodratollah
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.322-325
    • /
    • 2016
  • Background: Musculoskeletal disorders (MSDs) are a common problem among carpet weavers. This study was undertaken to introduce affecting personal and occupational factors in developing the number of MSDs among carpet weavers. Methods: A cross-sectional study was performed among 862 weavers in seven towns with regard to workhouse location in urban or rural regions. Data were collected by using questionnaires that contain personal, workplace, and information tools and the modified Nordic MSDs questionnaire. Statistical analysis was performed by applying Poisson and negative binomial mixed models using a full Bayesian hierarchical approach. The deviance information criterion was used for comparison between models and model selection. Results: The majority of weavers (72%) were female and carpet weaving was the main job of 85.2% of workers. The negative binomial mixed model with lowest deviance information criterion was selected as the best model. The criteria showed the convergence of chains. Based on 95% Bayesian credible interval, the main job and weaving type variables statistically affected the number of MSDs, but variables age, sex, weaving comb, work experience, and carpet weaving looms were not significant. Conclusion: According to the results of this study, it can be concluded that occupational factors are associated with the number of MSDs developing among carpet weavers. Thus, using standard tools and decreasing hours of work per day can reduce frequency of MSDs among carpet weavers.

Exploring What Effects on Vaccination for Covid-19: Converging Health Locus of Control and Health Belief Model (코로나 19 백신 접종영향 요인의 탐색: 건강통제소재와 건강신념모형의 융합)

  • Joo, Jihyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.347-357
    • /
    • 2021
  • Since the outbreak of Covid-19, many countries have tried to defense Covid-19 to protect their people and as an influential and reliable policy as of now, they have recommended vaccinating. Thus, this research explored what influences the intention to vaccinate against Covid-19 with three health locus of control from multi-dimension health locus of control (MHLC) and perceived susceptibility and severity from health belief model (HBM) through PLS path modeling. Consequently, chance locus of control (CHLC) influence indirectly intention to vaccinate against Covid-19 mediating with susceptibility perception. It implies that the more fatalistic people attitude toward Covid-19, the more susceptible they perceived to the disease, and then, the stronger intention to vaccinate they would have. Thus, the health promotion authorities should motivate to activate people's susceptibility perception toward the disease through utilizing a variety of policies and consider that the fatalistic tendency toward the disease of people could play an antecedent role in the process.