• Title/Summary/Keyword: Disease and Insect Pest

Search Result 77, Processing Time 0.028 seconds

An Analysis of Impacts of Climate Change on Rice Damage Occurrence by Insect Pests and Disease (기후변화가 벼 병해충 피해면적 발생에 미치는 영향분석)

  • Jeong, Hak-Kyun;Kim, Chang-Gil;Moon, Dong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.52-56
    • /
    • 2014
  • BACKGROUND: It is known that impacts of climate change on damage occurrence by insect pests and diseases are increasing. The negative effects of climate change on production will threaten our food security. It is needed that on the basis of analysis of the impacts, proper strategies in response to climate change are developed. METHODS AND RESULTS: The objective of this paper is to estimate impacts of climate change on rice damage occurrence by insect pests and diseases, using the panal model which analyzes both cross-section data and time series data. The result of an analysis on impacts of climate change on rice damage occurrence by pest insect and disease showed that the damage occurrence by Rice leaf roller and Rice water weevil increased if temperature increased, and damage occurrence by Stripe, Sheath blight, and Leaf Blast increased if precipitation(or amount of sunshine) increased(or decreased). CONCLUSION: Adaptation strategies, supplying weather forecasting information by region, developing systematical strategies for prevention of damage occurrence by pest insect and disease, analyzing the factors of damage occurrence by unexpected pest insect and disease, enforcing international cooperation for prevention of damage occurrence are needed to minimize the impacts of damage occurrence on rice production.

Tomato Yellow Leaf Curl China Virus Impairs Photosynthesis in the Infected Nicotiana benthamiana with βC1 as an Aggravating Factor

  • Farooq, Tahir;Liu, Dandan;Zhou, Xueping;Yang, Qiuying
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.521-529
    • /
    • 2019
  • Tomato yellow leaf curl China virus is a species of the widespread geminiviruses. The infection of Nicotiana benthamiana by Tomato yellow leaf curl China virus (TYLCCNV) causes a reduction in photosynthetic activity, which is part of the viral symptoms. ${\beta}C1$ is a viral factor encoded by the betasatellite DNA ($DNA{\beta}$) accompanying TYLCCNV. It is a major viral pathogenicity factor of TYLCCNV. To elucidate the effect of ${\beta}C1$ on plants' photosynthesis, we measured the relative chlorophyll (Chl) content and Chl fluorescence in TY-LCCNV-infected and ${\beta}C1$ transgenic N. benthamiana plants. The results showed that Chl content is reduced in TYLCCNV A-infected, TYLCCNV A plus $DNA{\beta}$ (TYLCCNV A + ${\beta}$)-infected and ${\beta}C1$ transgenic plants. Further, changes in Chl fluorescence parameters, such as electron transport rate, $F_v/F_m$, NPQ, and qP, revealed that photosynthetic efficiency is compromised in the aforementioned N. benthamiana plants. The presense of ${\beta}C1$ aggravated the decrease of Chl content and photosynthetic efficiency during viral infection. Additionally, the real-time quantitative PCR analysis of oxygen evolving complex genes in photosystem II, such as PsbO, PsbP, PsbQ, and PsbR, showed a significant reduction of the relative expression of these genes at the late stage of TYLCCNV A + ${\beta}$ infection and at the vegetative stage of ${\beta}C1$ transgenic N. benthamiana plants. In summary, this study revealed the pathogenicity of TYLCCNV in photosynthesis and disclosed the effect of ${\beta}C1$ in exacerbating the damage in photosynthesis efficiency by TYLCCNV infection.

Current status on the occurrence and management of disease, insect and mite pests in the non-chemical or organic apple orchards (무농약 유기재배 사과원의 병해충 발생 및 관리 실태)

  • Choi, Kyung-Hee;Lee, Dong-Hyuk;Song, Yang-Yik;Nam, Jong-Chul;Lee, Soon-Won
    • Proceedings of the Korean Society of Organic Agriculture Conference
    • /
    • 2009.12a
    • /
    • pp.45-56
    • /
    • 2009
  • Current status on the occurrence and the management of the major disease, insect and mite pests were investigated in the organic or non-chemical pest control orchards from 2005 to 2009. Numbers of certified organic or non-chemical apple orchards were increased from 14 in 2005 to 78 in 2008. Severe damages on leaves and fruits occurred by the several diseases such as marssonina blotch, bitter rot, white rot, sooty blotch and flyspeck, and the several insect pests such as apple leaf-curling aphid, woolly apple aphid, oriental fruit moth and peach fruit moth on the almost certified organic or non-chemical pest control orchards. About 10 and 18 environmental-friendly materials were used to control diseases and insect or mite pests respectively. But, lime sulfur and bordeaux mixture to diseases and machine oil, plant oil mixed with egg yolk, and pheromone mating disruptions to insect pests were effective to control under the adequate conditions. At present, it is extremely difficult to produce organic apples in Korea. Growers must consider about and solve so many conditions on the cultivar, weather, local site, marketing and so on, before when they decide to change from conventional or IPM(Integrated Pest Management) to organic or non-chemical pest control orchards.

  • PDF

Morphological Features of Coleosporium xanthoxyli and Its Alternate Host in Korea (산초나무 잎녹병균의 중간기주 및 형태학적 특징)

  • Lee, S.K.;Lee, K.H.;Lee, C.K.;Kim, D.Y.;Hwang, J.H.
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.279-284
    • /
    • 2004
  • A rust fungus has caused a serious early defoliation of Zanthoxylum schinifolium during growing seasons every year at the plantations located at Hadong and Jinju, Kyeongsangnam-Do in Korea. In order to identify the rust fungus and clarify its life cycle in Korea, aeciospores from Pinus thunbergii were artificially inoculated on the leaves of Z. schinifolium. Uredinial stage was successively formed on the leaves of Z. schinifolium. Based on the artificial inoculation test and on the morphological features of the dried specimens collected from P. thunbergii and Z. schinifolium, this rust fungus was identified as Coleosporium xanthoxyli. Morphological features of aecial and uredinial stages of the species were described. The first symptom of the infection was developed from later June to early July. And leaf infection ratio was 17.8%-58.7% during August at Hadong and Jinju regions of Kyeongsangnam-Do in Korea.

Occurrence of Rhizina Root Rot in a Black Pine (Pinus thunbergii) Forest Located at the Western Coastal Area in Korea and Its Spreading Patterns (서해안 곰솔림에서의 리지나뿌리썩음병 발생 및 확산 유형)

  • Lee, Seung-Kyu;Kim, Kyung-Hee;Kim, Yeon-Tae;Park, Ju-Yong;Lee, Sang-Hyun
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.208-212
    • /
    • 2005
  • At the survey of June, 2002, total 294 dead frees were found in 20 ha of Black pine (Pinus thunbergii) forest located in the western coastal region of Korean peninsula. The dead trees were scattered over the 27 place as groups of about ten trees each. As a result of the field survey on the relationship between the conditions of dead trees and the occurrence of fruiting bodies of Rhizina undulata around the dead and/or dying trees, from June 2002 to August 2004 in the four plots, the occurrence of infected trees was observed as a shape of an irregular concentric circle from the first infected tree and R. undulata was found mainly around the dead tree. Because there was no observation of any other insects and pathogens which would kill trees, the cause of tree death in groups was considered owing to R. undulata. From the analysis of the physical and chemical proper ties of the soil collected from the damaged areas, the pH of soil was between 4.6 and 5.8 and the contents of soil nutrients were very low. Any "fire" trace was not found at all the 27 damaged places in the area, Taean, Chungcheongnam-Do, which are generally known as an important factor to initiate development of the disease. Therefore, further examination is needed to verify precisely about other environmental factors related with the group dying of the Black pines in this area beside 'fire'.

Information System for Agricultural Weather and Disease and Insect Pest Management for Rice Growers in Gyeonggi-do, Korea (경기도 벼 재배 농가를 위한 농업기상 및 병해충예찰 정보시스템)

  • 홍순성;강위수;조성인;김진영;박경렬;한용규;박은우
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2003.09a
    • /
    • pp.87-87
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (http://www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA).(omitted)

  • PDF

Distribution patterns of Monochamus alternatus and M. saltuarius (Coleoptera: Cerambycidae) in Korea

  • Kwon, Tae-Sung;Lim, Jong-Hwan;Sim, Sang-Jun;Kwon, Young-Dae;Son, Sung-Kil;Lee, Kooi-Yong;Kim, Yeon-Tae;Park, Ji-Won;Shin, Chang-Hoon;Ryu, Seok-Bong;Lee, Chong-Kyu;Shin, Sang-Chul;Chung, Yeong-Jin;Park, Young-Seuk
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.543-550
    • /
    • 2006
  • Distribution patterns of two pine sawyer species (Monochamus alternatus which is the main vector insect and M. saltuarius which is the potential insect vector of the pine wood nematode) were investigated in Korea. The data were collected at 89 study sites which were chosen to cover the whole region of South Korea. The selected pine trees were killed in early April and left for I year in the pine stands to be egg-laid by the pine sawyers. Emergence of the beetles from the dead pine trees was checked from early April to late July. M. saltuarius was the most abundant in the mid to northern areas of South Korea, whereas M. alternatus in Jeju-do, southernmost island of Korea. Considering temperature distribution patterns in areas where the two species occur, their thermal distribution boundary may be formed around $13.2^{\circ}C$ of annual mean temperature. The hypothesized distribution map of the two Monochamus species under the invasion of pine wilt disease is suggested on the base of thermal distribution of Korean peninsula.

Meteorological Condition and Pest Management (기상환경과 병해충 발생 및 그 대책)

  • 현재선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.361-370
    • /
    • 1982
  • The effects of climatic factors on organisms lire variable and complex, and it, however, can be interpreted in terms of those on the distribution and those on the population densities. The distribution of an organism may largely be determined by the temperatures, except some temporal organisms which are depended on the air mass movements. Population density of an organism is determined by various climatic factors, such as previous winter temperature, temperature of growing season and rainfall. The start of growing season of the rice plants has been shifted to earlier since last decade in Korea. This may mean that the overall climatic condition during the growing season might be considerably different from those in past years, and such a difference in climatic conditions might have close relation with the recent status of the diseases and insect pests through direct effects on the physiology and population dynamics of the organisms, as well as through on the biotic associations of the pest organisms. The white back planthopper and brown planthopper have become the key insect pests in Korea in recent years. They are migratory and have high reproductive pontentials and more generations than average residential insects. The synchronization of the migrants and physiological condition of the rice plants seems to be the important factors in relation to the recent outbreaks of these insects; the high reproductive rate can be obtained with the growth stage of rice being 30-50 days after transplanting. The modication of the microclimate associated with high plant density and some other introduced new cultural techniques also have some relation with the outbreak. The key diseases of the rice are the blast disease, sheath blight and the bacterial leaf blight. For the rice blast, the seedling blast and leaf blast during the early growing season and the neck blast, have become more serious, the former may be related to hotbed nursery and the later may be related to the high humidity in early August, and synchronization of the heading time which has been shifted to early part from middle or late part of August. In general, for the rice diseases, the development of the new races have been the most serious which are largely resulted from the introduction of the new varieties, but it also seems to be related with the prolonged periods of the favorable condition associated with the shifted growing seasons. In general, the diseases and insect pest problems have become much more variable and complex, and control measures should be based on the thorough knowledge of the ecology of the pest organisms, that is, effects of various environmental factors on the disease cycle; spore release, spore deposition, infection, colonization and sporulation of the disease organisms, and those on the development, reproductive potentials, dispersal, age specific responses of the insects. The well organized real-time pest management systems, such as alfalfa weevil management system developed at the Purdue University in U.S., is the prime importance for the implementation of the pest management principles.

  • PDF

Characteristics of the Infection of Tilletia laevis Kuhn (syn. Tilletia foetida (Wallr.) Liro.) in Compatible Wheat

  • Ren, Zhaoyu;Zhang, Wei;Wang, Mengke;Gao, Haifeng;Shen, Huimin;Wang, Chunping;Liu, Taiguo;Chen, Wanquan;Gao, Li
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Tilletia laevis Kuhn (syn. Tilletia foetida (Wallr.) Liro.) causes wheat common bunt, which is one of the most devastating plant diseases in the world. Common bunt can result in a reduction of 80% or even a total loss of wheat production. In this study, the characteristics of T. laevis infection in compatible wheat plants were defined based on the combination of scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. We found T. laevis could lead to the abnormal growth of wheat tissues and cells, such as leakage of chloroplasts, deformities, disordered arrangements of mesophyll cells and also thickening of the cell wall of mesophyll cells in leaf tissue. What's more, T. laevis teliospores were found in the roots, stems, flag leaves, and glumes of infected wheat plants instead of just in the ovaries, as previously reported. The abnormal characteristics caused by T. laevis may be used for early detection of this pathogen instead of molecular markers in addition to providing theoretical insights into T. laevis and wheat interactions for breeding of common bunt resistance.

Internet-based Information System for Agricultural Weather and Disease and Insect fast management for rice growers in Gyeonggi-do, Korea

  • S.D. Hong;W.S. Kang;S.I. Cho;Kim, J.Y.;Park, K.Y;Y.K. Han;Park, E.W.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.2-109
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA). Map images of hourly air temperature and rainfall are also generated at 309m x 309m resolution using hourly data obtained from AWS installed at 191 locations by KMA. Based on near real-time weather data from 11 ATC, hourly infection risks of rice blast, sheath blight, and bacterial grain rot for individual districts are estimated by disease forecasting models, BLAST, SHBLIGHT, and GRAINROT. Users can diagnose various diseases and insects of rice and find their information in detail by browsing thumbnail images of them. A database on agrochemicals is linked to the system for disease and insect diagnosis to help users search for appropriate agrochemicals to control diseases and insect pests.

  • PDF