DOI QR코드

DOI QR Code

Tomato Yellow Leaf Curl China Virus Impairs Photosynthesis in the Infected Nicotiana benthamiana with βC1 as an Aggravating Factor

  • Farooq, Tahir (State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences) ;
  • Liu, Dandan (State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences) ;
  • Zhou, Xueping (State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences) ;
  • Yang, Qiuying (State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences)
  • Received : 2019.04.27
  • Accepted : 2019.07.18
  • Published : 2019.10.01

Abstract

Tomato yellow leaf curl China virus is a species of the widespread geminiviruses. The infection of Nicotiana benthamiana by Tomato yellow leaf curl China virus (TYLCCNV) causes a reduction in photosynthetic activity, which is part of the viral symptoms. ${\beta}C1$ is a viral factor encoded by the betasatellite DNA ($DNA{\beta}$) accompanying TYLCCNV. It is a major viral pathogenicity factor of TYLCCNV. To elucidate the effect of ${\beta}C1$ on plants' photosynthesis, we measured the relative chlorophyll (Chl) content and Chl fluorescence in TY-LCCNV-infected and ${\beta}C1$ transgenic N. benthamiana plants. The results showed that Chl content is reduced in TYLCCNV A-infected, TYLCCNV A plus $DNA{\beta}$ (TYLCCNV A + ${\beta}$)-infected and ${\beta}C1$ transgenic plants. Further, changes in Chl fluorescence parameters, such as electron transport rate, $F_v/F_m$, NPQ, and qP, revealed that photosynthetic efficiency is compromised in the aforementioned N. benthamiana plants. The presense of ${\beta}C1$ aggravated the decrease of Chl content and photosynthetic efficiency during viral infection. Additionally, the real-time quantitative PCR analysis of oxygen evolving complex genes in photosystem II, such as PsbO, PsbP, PsbQ, and PsbR, showed a significant reduction of the relative expression of these genes at the late stage of TYLCCNV A + ${\beta}$ infection and at the vegetative stage of ${\beta}C1$ transgenic N. benthamiana plants. In summary, this study revealed the pathogenicity of TYLCCNV in photosynthesis and disclosed the effect of ${\beta}C1$ in exacerbating the damage in photosynthesis efficiency by TYLCCNV infection.

Keywords

References

  1. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts: polypenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15. https://doi.org/10.1104/pp.24.1.1
  2. Baker, N. R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  3. Baron, M., Pineda, M. and Perez-Bueno, M. L. 2016. Picturing pathogen infection in plants. Z. Naturforsch. C 71:355-368. https://doi.org/10.1515/znc-2016-0134
  4. Bhattacharyya, D. and Chakraborty, S. 2018. Chloroplast: the Trojan horse in plant-virus interaction. Mol. Plant Pathol. 19:504-518. https://doi.org/10.1111/mpp.12533
  5. Bhattacharyya, D., Gnanasekaran, P., Kumar, R. K., Kushwaha, N. K., Sharma, V. K., Yusuf, M. A. and Chakraborty, S. 2015. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J. Exp. Bot. 66:5881-5895. https://doi.org/10.1093/jxb/erv299
  6. Bjorkman, O. and Demmig, B. 1987. Photon yield of $O_2$ evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. https://doi.org/10.1007/BF00402983
  7. Bonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T. and Berger, S. 2006. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1-12. https://doi.org/10.1007/s00425-006-0303-3
  8. Brown, J. K., Fauquet, C. M., Briddon, R. W., Zerbini, F. M., Moriones, E. and Navas-Castillo, J. 2012. Family Geminiviridae. In: Virus Taxonomy: 9th Report of the International Committee on Taxonomy of Viruses, eds. by A. King, E. Lefkowitz, M. J. Adams and E. B. Carstens, pp. 351-373. Elsevier, London, UK.
  9. Chaerle, L., Hagenbeek, D., Bruyne, E. D., Valcke, R. and Van Der Straeten, D. 2004. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol. 45:887-896. https://doi.org/10.1093/pcp/pch097
  10. Chaerle, L. and Van der Straeten, D. 2000. Imaging techniques and the early detection of plant stress. Trends Plant Sci. 5:495-501. https://doi.org/10.1016/S1360-1385(00)01781-7
  11. Cui, X., Tao, X., Xie, Y., Fauquet, C. M. and Zhou, X. 2004. A $DNA{\beta}$ associated with Tomato yellow leaf curl China virus is required for symptom induction. J. Virol. 78:13966-13974. https://doi.org/10.1128/JVI.78.24.13966-13974.2004
  12. Funayama-Noguchi, S. and Terashima, I. 2006. Effects of Eupatorium yellow vein virus infection on photosynthetic rate, chlorophyll content and chloroplast structure in leaves of Eupatorium makinoi during leaf development. Funct. Plant Biol. 33:165-175. https://doi.org/10.1071/FP05172
  13. Inoue-Nagata, A. K., Lima, M. F. and Gilbertson, R. L. 2016. A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic. Bras. 34:8-18. https://doi.org/10.1590/S0102-053620160000100002
  14. Jifon, J. L., Syvertsen, J. P. and Whaley, E. 2005. Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus sp. leaves. J. Am. Soc. Hortic. Sci. 130:152-158. https://doi.org/10.21273/JASHS.130.2.152
  15. Lei, R., Jiang, H., Hu, F., Yan, J. and Zhu, S. 2016. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep. 36:327-341.
  16. Leke, W. N., Mignouna, D. B., Brown, J. K. and Kvarnheden, A. 2015. Begomovirus disease complex: emerging threat to vegetable production systems of West and Central Africa. Agric. Food Secur. 4:1. https://doi.org/10.1186/s40066-014-0020-2
  17. Lohaus, G., Heldt, H. W. and Osmond, C. B. 2000. Infection with phloem limited Abutilon mosaic virus causes localized carbohydrate accumulation in leaves of Abutilon striatum: relationships to symptom development and effects on chlorophyll fluorescence quenching during photosynthetic induction. Plant Biol. 2:161-167. https://doi.org/10.1055/s-2000-9461
  18. Nath, K., Jajoo, A., Poudyal, R. S., Timilsina, R., Park, Y. S., Aro, E.-M., Nam, H. G. and Lee, C.-H. 2013. Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett. 587:3372-3381. https://doi.org/10.1016/j.febslet.2013.09.015
  19. Perez-Bueno, M. L., Ciscato, M., VandeVen, M., Garcia-Luque, I., Valcke, R. and Baron, M. 2006. Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosynth. Res. 90:111-123. https://doi.org/10.1007/s11120-006-9098-0
  20. Perez-Bueno, M. L., Rahoutei, J., Sajnani, C., Garcia-Luque, I. and Baron, M. 2004. Proteomic analysis of the oxygenevolving complex of photosystem II under biotec stress: studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics 4:418-425. https://doi.org/10.1002/pmic.200300655
  21. Pineda, M., Olejnickova, J., Csefalvay, L. and Baron, M. 2011. Tracking viral movement in plants by means of chlorophyll fluorescence imaging. J. Plant Physiol. 168:2035-2040. https://doi.org/10.1016/j.jplph.2011.06.013
  22. Pineda, M., Soukupova, J., Matous, K., Nedbal, L. and Baron, M. 2008. Conventional and combinatorial chlorophyll fluorescence imaging of tobamovirus-infected plants. Photosynthetica 46:441-451. https://doi.org/10.1007/s11099-008-0076-y
  23. Rolfe, S. A. and Scholes, J. D. 2010. Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma 247:163-175. https://doi.org/10.1007/s00709-010-0203-z
  24. Rong, W., Wang, X., Wang, X., Massart, S. and Zhang, Z. 2018. Molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in wheat after infection of barley yellow dwarf virus. Int. J. Mol. Sci. 19:1187. https://doi.org/10.3390/ijms19041187
  25. Sasi, S., Venkatesh, J., Daneshi, R. F. and Gururani, M. A. 2018. Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants 7:100. https://doi.org/10.3390/plants7040100
  26. Spoustova, P., Synkova, H., Valcke, R. and Cerovska, N. 2013. Chlorophyll a fluorescence as a tool for a study of the Potato virus Y effects on photosynthesis of nontransgenic and transgenic Pssu-ipt tobacco. Photosynthetica 51:191-201. https://doi.org/10.1007/s11099-013-0023-4
  27. Zhang, J., Dang, M., Huang, Q. and Qian, Y. 2015. Determinants of disease phenotype differences caused by closely-related isolates of begomovirus betasatellites inoculated with the same species of helper virus. Viruses 7:4945-4959. https://doi.org/10.3390/v7092853
  28. Zhao, J.. Zhang, X., Hong, Y. and Liu, Y. 2016. Chloroplast in plant-virus interaction. Front. Microbiol. 7:1565.
  29. Zhou, X. 2013. Advances in understanding begomovirus satellites. Annu. Rev. Phytopathol. 51:357-381. https://doi.org/10.1146/annurev-phyto-082712-102234