• Title/Summary/Keyword: Discrete time sliding mode control

Search Result 46, Processing Time 0.025 seconds

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems (전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

Discrete-time Sliding Mode Control with Input Shaping for flexible systems

  • Woo, Lim-Hyun;Choo, Chung-Chung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.130.5-130
    • /
    • 2001
  • This paper presents a discrete-time sliding mode control method for linear time-invariant systems with matched uncertainties. In this paper, we suggest a method of adding a command generator using input shaping filter to a discrete-time sliding mode controller. We design the number of steps required to reach the sliding layer and the magnitude of a control input, respectively using the shaping filter. Therefore we can minimize the excitation of the resonance mode and increase the tracking performance of a system. Simulation results are included to show its effectiveness.

  • PDF

A study on the power system stabilizer using discrete-time adaptive sliding mode control (이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구)

  • Park, Young-Moon;Kim, Wook
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF

Discrete-Time Sliding Mode Controller for Linear Time-Varying Systems with Disturbances

  • Park, Kang-Bak
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-247
    • /
    • 2000
  • In this paper, a discrete-time sliding mode controller for linear time-varying systems with disturbances is proposed. The proposed method guarantees the systems state is globally uniformly ultimately bounded(G.U.U.B) under the existence of time-varying disturbances.

  • PDF

Design of a Discrete Time Sliding Mode Controller for Laser Marking System (레이저 마킹 시스템의 이산시간 슬라이딩 모드 제어기 설계)

  • 이충우;채수경;최재모;정정주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.304-311
    • /
    • 2004
  • In this paper we present a technique of discrete-time sliding mode controller design for assigning eigenvalues of sliding mode and determining a convergence rate to sliding surface. First the sliding mode coefficient is designed via Ackermann s formula. Then a linear controller is designed to enforce sliding mode such that the resulting closed loop yields the desired eigenvalues. As we use a linear control instead of nonlinear control, chattering is nearly eliminated. Simulation and experimental results are included to show the effectiveness of the proposed method for Laser Marking System.

Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis (이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석)

  • 김동식;서호준;서삼준;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

A New Robust Digital Sliding Mode Control with Disturbance Observer for Uncertain Discrete Time Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a new discrete variable structure controller based on a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed sliding surface. The discrete version of the disturbance observer is derived for the effective compensation of the effect of uncertainties and disturbances. A corresponding control input with the disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined sliding surface for guaranteeing the designed output in the sliding surface from any initial condition to the origin for all the parameter variations and disturbances. By using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Discrete-Time Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2011
  • In the real-field of control cases for robot manipulators, there always exists a modeling error, which results the model has the uncertainties in its parameters and/or structure. In many modem applications, digital computers are extensively used to implement control algorithms to control such systems. The discretization of the nonlinear dynamic equations of such systems results in a complicated discrete dynamic equations. Therefore, it will be difficult to design a discrete-time controller to give good tracking performances in the presence of certain uncertainties. In this paper, a discrete-time sliding mode control algorithm for nonlinear and time varying robot manipulators with uncertainties is presented. Sufficient conditions for guaranteeing the convergence of the discrete-time SMC system are derived. As example simulations, the proposed SMC algorithm is applied to a two-link robotic manipulator with unknown dynamics. The results of the simulation indicate that the developed control scheme is effective in manipulators and electro-mechanical system control.

Design of Adaptive Discrete Time Sliding-Mode Tracking Controller for a Hydraulic Proportional Control System Considering Nonlinear Friction (비선형 마찰을 고려한 유압비례제어 시스템의 적응 이산시간 슬라이딩모드 추적 제어기 설계)

  • Park, H.B.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.175-180
    • /
    • 2005
  • Incorrections between model and plant are parameter, system order uncertainties and modeling error due to disturbance like friction. Therefore to achieve a good tracking performance, adaptive discrete time sliding mode tracking controller is used under time-varying desired position. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law. Robustness is increased by using both a recursive least-square method and a sliding function-based nonlinear feedback. The effectiveness of the proposed control algorithm is proved by the results of simulation and experiment.

  • PDF