• Title/Summary/Keyword: Discrete event systems

Search Result 270, Processing Time 0.035 seconds

Performance Analysis of Priority Scheme in the IEC/ISA Fieldbus (IEC/ISA 필드버스의 우선 순위 성능 분석)

  • Hong, Seung-Ho;Ko, Seong-Jun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.94-117
    • /
    • 1998
  • This paper investigates the performance characteristics of the data link layer of the 1996 version of IEC/ISA fieldbus which is developed as internatioal standard of fieldbus. A discrete-event simulation model of the data link layer of IEC/ISA fieldbus is developed. Using the simulation model, this paper identifies the network parameters that influence the performance of prioritys scheme and real-time data transmission, and analyzes the delay performance of IEC/ISA fieldbus with respect to the change of network parameters. The simulation model also integrates continuous-time simulation model of a control system as application process. Using the integrated simulation model, this study investigates the effect of network-induced delay on the performance of control system. Since the simulation model developed in this study can predict the network performance, it will be effectively utilized in the design phase of control and automation systems that adopt the IEC/ISA fieldbus.

  • PDF

An Efficient Hybrid Simulation Methodology Using the Game Physics Engine (물리엔진을 이용한 효과적인 하이브리드 시뮬레이션 방법론)

  • Lee, Wan-Bok;Ryu, Seuc-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.539-544
    • /
    • 2012
  • Most of the man-made systems can be modeled as a hybrid system which consists of both the high-level and the low-level component model. High level model is responsible for decision-making and the low-level one takes control of the mechanical component parts. Since the two models requires different interpretation method according to their type, analysis of a hybrid system becomes a difficult job. For the Analysis of the high-level model, methods for discrete event system models such as FSM can be used. On the contrary, numerical analysis techniques are required for the low-level continuous-time system model. Since it becomes a difficult thing for a modeller specifies and develops both the two-level models altogether, we propose an efficient hybrid simulation method which employs a game physics engine that has been widely and successfully used in the area of game industry.

Simulation Analysis for Verifying an Implementation Method of Higher-performed Packet Routing

  • Park, Jaewoo;Lim, Seong-Yong;Lee, Kyou-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.440-443
    • /
    • 2001
  • As inter-network traffics grows rapidly, the router systems as a network component becomes to be capable of not only wire-speed packet processing but also plentiful programmability for quality services. A network processor technology is widely used to achieve such capabilities in the high-end router. Although providing two such capabilities, the network processor can't support a deep packet processing at nominal wire-speed. Considering QoS may result in performance degradation of processing packet. In order to achieve foster processing, one chipset of network processor is occasionally not enough. Using more than one urges to consider a problem that is, for instance, an out-of-order delivery of packets. This problem can be serious in some applications such as voice over IP and video services, which assume that packets arrive in order. It is required to develop an effective packet processing mechanism leer using more than one network processors in parallel in one linecard unit of the router system. Simulation analysis is also needed for verifying the mechanism. We propose the packet processing mechanism consisting of more than two NPs in parallel. In this mechanism, we use a load-balancing algorithm that distributes the packet traffic load evenly and keeps the sequence, and then verify the algorithm with simulation analysis. As a simulation tool, we use DEVSim++, which is a DEVS formalism-based hierarchical discrete-event simulation environment developed by KAIST. In this paper, we are going to show not only applicability of the DEVS formalism to hardware modeling and simulation but also predictability of performance of the load balancer when implemented with FPGA.

  • PDF

Design of a Multi-Thread Architecture for an LLRP Server (LLRP(Low Level Reader Protocol) 서버를 위한 멀티쓰레드 구조의 설계)

  • Lee, Tae-Young;Kim, Yun-Ho;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.93-100
    • /
    • 2012
  • LLRP (Low-Level Reader Protocol) specifies an interface between RFID readers and RFID applications, also called LLRP servers and clients respectively. An LLRP server should concurrently execute various functions. This paper designs an LLRP server of a multi-threaded architecture. For that, (i) the operational procedure between LLRP servers and clients is investigated, (ii) the functional requirements of LLRP servers are presented, (iii) the operation of an LLRP server is decomposed into several threads to satisfy those functional requirements, and (iv) the operational procedure is further examined in thread-level. To validate the designed architecture, it is modeled and simulated by using the DEVS formalism which specifies discrete event systems in a hierarchical, modular manner. From the simulation result, we can conclude that the proposed architecture conforms the LLRP standard and satisfies all the given functional requirements.

Logical Modeling of Base System Model for Tank Engagement Simulation (전차 교전 시뮬레이션을 위한 기본체계모델의 논리 모델링 방법)

  • Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Tank, which is a representative ground weapon system, is one of the most important weapon systems in each country. For the cost-effective acquisition of a tank based on scientific analysis, the operational concept and effectiveness should be studied based on engagement simulation technology. Besides physical capabilities including maneuver and communication, logical models including decision-making of a tank commander should be developed systematically. This paper describes a method to model a tank for engagement simulation based on Base System Model(BSM), which is the standard architecture of the weapon system model in AddSIM, an integrated engagement simulation software. In particular, a method is proposed to develop logical models by hierarchical and modular approach based on human decision-making model. The proposed method applies a mathematical formalism called DEVS(Discrete EVent system Specification) formalism. It is expected that the proposed method is widely used to study the operational concept and analyze the effectiveness of tanks in the Korean military in the future.

Development Environment and Extended DEVS Formalism for User-Level Customizable Modeling and Simulation (사용자 수준 맞춤형 모델링 및 시뮬레이션을 위한 개발환경 및 확장된 DEVS 형식론)

  • Lee, Jun Hee;Kang, Bong Gu;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.37-44
    • /
    • 2018
  • In applying modeling and simulation (M&S) techniques to analyze complex discrete event dynamic systems, conventionally users had to use different simulation environments depending on the user-level. To solve the inconvenience, this paper proposes an integrated development environment for M&S depending on user-level and a formalized interface to manage the model in the development environment efficiently. The interface consists of an extended DEVS formalism and model making rules. The development environment is divided into a modeling environment and a simulation environment. In the modeling environment, three modeling methods are provided for each level of the users. Users inputs several parameters to the model generated as a result of the modeling process, and experiments in various cases by using the simulation environment. The case study shows the implementation of the proposed M&S environment, and using the implemented environment, it shows the M&S process of the complex defense combat system.

Development of Real Time Simulation Environment Based on DEVS Formalism Applicable to Avionics System Integration Laboratory (항공용 SIL에 적용 가능한 DEVS 형식론 기반의 시뮬레이션 환경 개발)

  • Seo, Min-gi;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.345-351
    • /
    • 2019
  • Avionics System Integration Laboratory is an integrated test environment for the integration and the verification of avionics systems. Recently, in order to fully consider the requirements verification of avionics system from the aspect of the entire system integration, the participation in the development of the SIL field is advanced from the requirement analysis of the aircraft. Efforts are being made to minimize the cost and the period of development of a SIL so that it does not affect the overall schedule of the aircraft development. We propose the avionics simulation model framework (ASMF) based on the modeling formalism applicable to SIL in order to reduce development period/cost and increase maintenance by standardizing the modeling methods of SIL.

Two-Level Hierarchical Production Planning for a Semiconductor Probing Facility (반도체 프로브 공정에서의 2단계 계층적 생산 계획 방법 연구)

  • Bang, June-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.159-167
    • /
    • 2015
  • We consider a wafer lot transfer/release planning problem from semiconductor wafer fabrication facilities to probing facilities with the objective of minimizing the deviation of workload and total tardiness of customers' orders. Due to the complexity of the considered problem, we propose a two-level hierarchical production planning method for the lot transfer problem between two parallel facilities to obtain an executable production plan and schedule. In the higher level, the solution for the reduced mathematical model with Lagrangian relaxation method can be regarded as a coarse good lot transfer/release plan with daily time bucket, and discrete-event simulation is performed to obtain detailed lot processing schedules at the machines with a priority-rule-based scheduling method and the lot transfer/release plan is evaluated in the lower level. To evaluate the performance of the suggested planning method, we provide computational tests on the problems obtained from a set of real data and additional test scenarios in which the several levels of variations are added in the customers' demands. Results of computational tests showed that the proposed lot transfer/planning architecture generates executable plans within acceptable computational time in the real factories and the total tardiness of orders can be reduced more effectively by using more sophisticated lot transfer methods, such as considering the due date and ready times of lots associated the same order with the mathematical formulation. The proposed method may be implemented for the problem of job assignment in back-end process such as the assignment of chips to be tested from assembly facilities to final test facilities. Also, the proposed method can be improved by considering the sequence dependent setup in the probing facilities.

The Applicability of Avionics Simulation Model Framework by Analyzing the Performance (항공용 시뮬레이션 모델 프레임워크 성능 분석을 통한 적용성 평가)

  • Seo, Min-gi;Cho, Yeon-je;Shin, Ju-chul;Baek, Gyong-hoon;Kim, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.336-343
    • /
    • 2021
  • Avionics corresponds to the brain, nerves and five senses of an aircraft, and consists of aircraft mounted electronic equipment of communication, identification, navigation, weapon, and display systems to perform flight and missions. It occupies about 50% of the aircraft system, and its importance is increasing as the technology based on the 4th industrial revolution is developed. As the development period of the aircraft is getting shorter, it is definitely necessary to develop a stable avionics SIL in a timely manner for the integration and verification of the avionics system. In this paper, we propose a method to replace the legacy SIL with the avionics simulation model framework based one and evaluate the framework based on the result of alternative application.

Vessel and Navigation Modeling and Simulation based on DEVS Formalism : Case Studies in Collision Avoidance Simulation of Vessels by COLREG (DEVS 형식론 기반의 선박 항해 모델링 및 시뮬레이션 (II) : COLREG 기반 선박 충돌회피 시뮬레이션을 통한 사례연구)

  • Hwang, Hun-Gyu;Woo, Sang-Min;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1700-1709
    • /
    • 2019
  • Recently, many researches have been under way to develop systems (services) to support the safety navigation of ships, and in these studies, common difficulties have been encountered in assessing the usefulness and effectiveness of the developed system. To solve these problems, we propose the DEVS-based ship navigation modeling and simulation technique. Following the preceding study, we analyze the COLREG rules and reflected to officer and helmsman agent models for decision making. Also we propose estimation and interpolation techniques to adopt the motion characteristics of the actual vessel to simulation. In addition, we implement the navigation simulation system to reflect the designed proposed methods, and we present five-scenarios to verify the developed simulation system. And we conduct simulations according to each scenario and the results were reconstructed. The simulation results confirm that the components modelled in each scenario enable to operate according to the navigation relationships.