• Title/Summary/Keyword: Discontinuous galerkin finite element method

Search Result 33, Processing Time 0.021 seconds

DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC PROBLEMS WITH MIXED BOUNDARY CONDITION

  • Ohm, Mi Ray;Lee, Hyun Yong;Shin, Jun Yong
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.585-598
    • /
    • 2014
  • In this paper we consider the nonlinear parabolic problems with mixed boundary condition. Under comparatively mild conditions of the coefficients related to the problem, we construct the discontinuous Galerkin approximation of the solution to the nonlinear parabolic problem. We discretize spatial variables and construct the finite element spaces consisting of discontinuous piecewise polynomials of which the semidiscrete approximations are composed. We present the proof of the convergence of the semidiscrete approximations in $L^{\infty}(H^1)$ and $L^{\infty}(L^2)$ normed spaces.

FINITE ELEMENT ANALYSIS FOR DISCONTINUOUS MAPPED HEXA MESH MODEL WITH IMPROVED MOVING LEAST SQUARES SCHEME

  • Tezuka, Akira;Oishi, Chihiro;Asano, Naoki
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.373-379
    • /
    • 2001
  • There is a big issue to generate 3D hexahedral finite element (FE) model, since a process to divide the whole domain into several simple-shaped sub-domains is required before generating a continuous mesh with mapped mesh generators. In general, it is nearly impossible to set up proper division numbers interactively to keep mesh connectivity between sub-domains on a complicated arbitrary-shaped domain. If mesh continuity between sub-domains is not required in an analysis, this complicated process can be omitted. Element-free Galerkin method (EFGM) can accept discontinuous meshes, which only requires nodal information. However it is difficult to choose a reasonable influenced domain in moving least squares scheme with non-uniformly distributed nodes in discontinuous FE models. A new FE scheme fur discontinuous mesh is proposed in this paper by applying improved EFGM with some modification to derive FE approximated function in discontinuous parts. Its validity is evaluated on linear elastic problems.

  • PDF

Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석)

  • Yun, Kwang Hee;Lee, Haegyun;Lee, Namjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1383-1393
    • /
    • 2014
  • Recently, with rapid improvement in computer hardware and theoretical development in the field of computational fluid dynamics, high-order accurate schemes also have been applied in the realm of computational hydraulics. In this study, numerical solutions of 1D shallow water equations are presented with TVD Runge-Kutta discontinuous Galerkin (RKDG) finite element method. The transcritical flows such as dam-break flows due to instant dam failure and transcritical flow with bottom elevation change were studied. As a formulation of approximate Riemann solver, the local Lax-Friedrichs (LLF), Roe, HLL flux schemes were employed and MUSCL slope limiter was used to eliminate unnecessary numerical oscillations. The developed model was applied to 1D dam break and transcritical flow. The results were compared to the exact solutions and experimental data.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS

  • MOON, MINAM;LIM, YANG HWAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.295-308
    • /
    • 2016
  • We propose a projection-based analysis of a new hybridizable discontinuous Gale-rkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses $L^2$-projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p + 1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.

EXPLICIT BOUNDS FOR THE TWO-LEVEL PRECONDITIONER OF THE P1 DISCONTINUOUS GALERKIN METHOD ON RECTANGULAR MESHES

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.267-280
    • /
    • 2009
  • In this paper we investigate a simple two-level additive Schwarz preconditioner for the P1 symmetric interior penalty Galerkin method of the Poisson equation on rectangular meshes. The construction is based on the decomposition of the global space of piecewise linear polynomials into the sum of local subspaces, each of which corresponds to an element of the underlying mesh, and the global coarse subspace consisting of piecewise constants. This preconditioner is a direct combination of the block Jacobi iteration and the cell-centered finite difference method, and thus very easy to implement. Explicit upper and lower bounds for the maximum and minimum eigenvalues of the preconditioned matrix system are derived and confirmed by some numerical experiments.

  • PDF

Finite Element Analysis of the Neutron Transport Equation in Spherical Geometry (구형에서 중성자 수송방정식의 유한요소법에 의한 해석)

  • Kim, Yong-Ill;Kim, Jong-Kyung;Suk, Soo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.319-328
    • /
    • 1992
  • The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation.

  • PDF

Analysis of 2-Dimensional Elasto-Plastic Stress by a Time-Discontinuous Variational Integrator of Hamiltonian (해밀토니안의 시간 불연속 변분적분기를 이용한 2차원 탄소성 응력파 해석)

  • Chol, S.S.;Huh, H.;Park, K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.263-266
    • /
    • 2008
  • This paper is concerned with the analysis of elasto-plastic stress waves in a mode I semi-infinite cracked solid subjected to Heaviside pulse load. This study adopts a time-discontinuous variational integrator based on Hamiltonian in order to reduce the numerical dispersive and dissipative errors. This also utilizes an integration scheme of the constitutive model with 2nd-order accuracy which is formulated on the strain space for a rate and temperature dependent material model. Finite element analyses of elasto-plastic stress waves are carried out in order to compare the accuracy between a conventional Galerkin method and the time- discontinuous variational integrator.

  • PDF

Simplified dynamic analysis of slender tapered thin-walled towers with additional mass and rigidity

  • Takabatake, Hideo;Mizuki, Akira
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.61-74
    • /
    • 1995
  • A linearly tapered, doubly symmetric thin-walled closed member, such as power-transmission towers and tourist towers, are often characterized by local variation in mass and/or rigidity, due to additional mass and rigidity. On the preliminary stage of design the closed-form solution is more effective than the finite element method. In order to propose approximate solutions, the discontinuous and local variation in mass and/or rigidity is treated continuously by means of a usable function proposed by Takabatake(1988, 1991, 1993). Thus, a simplified analytical method and approximate solutions for the free and forced transverse vibrations in linear elasticity are demonstrated in general by means of the Galerkin method. The solutions proposed here are examined from the results obtained using the Galerkin method and Wilson-${\theta}$ method and from the results obtained using NASTRAN.

Cooling Flow Characteristics of an Impinging Liquid Jet Using ALE Finite Element Method (ALE 유한요소법에 의한 충돌 액체 분류 냉각 유동 특성 해석)

  • Sung, Jaeyong;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.43-57
    • /
    • 1999
  • The fluid flow and heat transfer in a thin liquid film are investigated numerically. The flow Is assumed to be two-dimensional laminar and surface tension is considered. The most important characteristics of this flow is the existence of a hydraulic jump through which the flow undergoes very sharp and discontinuous change. Arbitrary Lagrangian-Eulerian(ALE) method is used to describe moving free boundary and a modified SIMPLE algorithm based on streamline upwind Petrov-Galerkin(SUPG) finite element method is used for time marching iterative solution. The numerical results obtained by solving unsteady full Navier-Stokes equations are presented for planar and radial flows subject to constant wall temperature or constant wall heat flux, and compared with available experimental data. It Is discussed systematically how the inlet Reynolds and Froude numbers and surface tension affect the formation of a hydraulic jump. In particular, the effect of temperature dependent fluid properties is also discussed.