• Title/Summary/Keyword: Discontinuous Galerkin(DG) method

Search Result 11, Processing Time 0.021 seconds

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

  • Zhang, Tie;Liu, Jingna
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.665-678
    • /
    • 2014
  • We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.

PERFORMANCE OF LIMITERS IN MODAL DISCONTINUOUS GALERKIN METHODS FOR 1-D EULER EQUATIONS (1-D 오일러 방정식에 관한 Modal 불연속 갤러킨 기법에서의 Limiter 성능 비교)

  • Karchani, A.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • Considerable efforts are required to develop a monotone, robust and stable high-order numerical scheme for solving the hyperbolic system. The discontinuous Galerkin(DG) method is a natural choice, but elimination of the spurious oscillations from the high-order solutions demands a new development of proper limiters for the DG method. There are several available limiters for controlling or removing unphysical oscillations from the high-order approximate solution; however, very few studies were directed to analyze the exact role of the limiters in the hyperbolic systems. In this study, the performance of the several well-known limiters is examined by comparing the high-order($p^1$, $p^2$, and $p^3$) approximate solutions with the exact solutions. It is shown that the accuracy of the limiter is in general problem-dependent, although the Hermite WENO limiter and maximum principle limiter perform better than the TVD and generalized moment limiters for most of the test cases. It is also shown that application of the troubled cell indicators may improve the accuracy of the limiters under some specific conditions.

FLOW PHYSICS ANALYSES USING HIGHER-ORDER DISCONTINUOUS GALERKIN-MLP METHODS ON UNSTRUCTURED GRIDS (비정렬 격자계에서 고차 정확도 불연속 갤러킨-다차원 공간 제한 기법을 이용한 유동 물리 해석)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.311-317
    • /
    • 2011
  • The present paper deals with the continuous works of extending the multi-dimensional limiting process (MLP) for compressible flows, which has been quite successful in finite volume methods, into discontinuous Galerkin (DG) methods. From the series of the previous, it was observed that the MLP shows several superior characteristics, such as an efficient controlling of multi-dimensional oscillations and accurate capturing of both discontinuous and continuous flow features. Mathematically, fundamental mechanism of oscillation-control in multiple dimensions has been established by satisfaction of the maximum principle. The MLP limiting strategy is extended into DG framework, which takes advantage of higher-order reconstruction within compact stencil, to capture detailed flow structures very accurately. At the present, it is observed that the proposed approach yields outstanding performances in resolving non-compressive as well as compressive flaw features. In the presentation, further numerical analyses and results are going to be presented to validate that the newly developed DG-MLP methods provide quite desirable performances in controlling numerical oscillations as well as capturing key flow features.

  • PDF

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

Applications of Implicit Discontinuous Galerkin Method to Shallow Water Equations (불연속 갤러킨 음해법의 천수방정식 적용)

  • Lee, Haegyun;Lee, Namjoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.569-574
    • /
    • 2020
  • Though the discontinuous Galerkin (DG) method has been developed and applied to shallow water equations mainly in explicit schemes, they have been criticized for the limitation in treatment of bottom friction terms and severe CFL conditions. In this study, an implicit scheme is devised and applied to some representative benchmark problems. The linear triangular elements were employed and the Roe numerical fluxes were adopted for convective fluxes. To preserve TVD property, the slope limiter was employed. As the case studies, the model is applied to the flow around the cylinders and the dam-break flow. Then, the results are compared with the experimental and numerical data of previous studies and good agreements were observed.

REVIEW AND IMPLEMENTATION OF STAGGERED DG METHODS ON POLYGONAL MESHES

  • KIM, DOHYUN;ZHAO, LINA;PARK, EUN-JAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.66-81
    • /
    • 2021
  • In this paper, we review the lowest order staggered discontinuous Galerkin methods on polygonal meshes in 2D. The proposed method offers many desirable features including easy implementation, geometrical flexibility, robustness with respect to mesh distortion and low degrees of freedom. Discrete function spaces for locally H1 and H(div) spaces are considered. We introduce special properties of a sub-mesh from a given star-shaped polygonal mesh which can be utilized in the construction of discrete spaces and implementation of the staggered discontinuous Galerkin method. For demonstration purposes, we consider the lowest case for the Poisson equation. We emphasize its efficient computational implementation using only geometrical properties of the underlying mesh.

DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR CAPILLARY SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE (미세입자분산 액적의 고체면에서 모세퍼짐 현상에 관한 직접수치해석 기법개발)

  • Hwang, Wook-Ryol;Jeong, Hyun-Jun;Kim, See-Jo;Kim, Chong-Youp
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.14-19
    • /
    • 2007
  • We present a direct numerical simulation technique and some preliminary results of the capillary spreading of a droplet containing particles on the solid substrate. We used the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension and employed the discontinuous Galerkin method for the stabilization of the interface advection equation. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles. We investigated the droplet spreading by the capillary force and discussed effects of the presence of particles on the spreading behavior. It has been observed that a particulate drop spreads less than the pure liquid drop. The amount of spread of a particulate drop has been found smaller than that of the liquid with effectively the same viscosity as the particulate drop.

Numerical Formulation for Flow Analysis of Dredged Soil (준설토 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • Experimental study of sedimentation and self-weight consolidation has been primary research area in dredged soil. However, good quality of the dredged soil and minimum water pollution caused by the pumping of reclaimed soil require intensive study of the flow characteristics of dredged material due to dumping. In this study, continuity and the equilibrium equations for mass flow assuming single phase was derived to simulate mass flow in dredged containment area. To optimize computation and modeling time for three dimensional geometry and boundary conditions, depth integration is applied to governing equations to consider three dimensional topography of the site. Petrov-Galerkin formulation is applied in spatial discretization of governing equations. Generalized trapezoidal rule is used for time integration, and Newton iteration process approximated the solution. DG and CDG technique were used for weighting matrix in discontinuous test function in dredged flow analysis, and numerical stability was evaluated by performed a square slump simulation. A comparative analysis for numerical methods showed that DG method applied to SU / PG formulation gives minimal pseudo oscillation and reliable numerical results.

EFFICIENT COMPUTATION OF COMPRESSIBLE FLOW BY HIGHER-ORDER METHOD ACCELERATED USING GPU (고차 정확도 수치기법의 GPU 계산을 통한 효율적인 압축성 유동 해석)

  • Chang, T.K.;Park, J.S.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.52-61
    • /
    • 2014
  • The present paper deals with the efficient computation of higher-order CFD methods for compressible flow using graphics processing units (GPU). The higher-order CFD methods, such as discontinuous Galerkin (DG) methods and correction procedure via reconstruction (CPR) methods, can realize arbitrary higher-order accuracy with compact stencil on unstructured mesh. However, they require much more computational costs compared to the widely used finite volume methods (FVM). Graphics processing unit, consisting of hundreds or thousands small cores, is apt to massive parallel computations of compressible flow based on the higher-order CFD methods and can reduce computational time greatly. Higher-order multi-dimensional limiting process (MLP) is applied for the robust control of numerical oscillations around shock discontinuity and implemented efficiently on GPU. The program is written and optimized in CUDA library offered from NVIDIA. The whole algorithms are implemented to guarantee accurate and efficient computations for parallel programming on shared-memory model of GPU. The extensive numerical experiments validates that the GPU successfully accelerates computing compressible flow using higher-order method.

About influence of the choice of numerical flow in the DG method for the solution of problems with shock waves

  • Mikhail M., Krasnov;Marina E., Ladonkina;Olga A., Nekliudova;Vladimir F., Tishkin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.463-477
    • /
    • 2022
  • This study compares various ways of calculating flows for the problems with the presence of shock waves by first-order schemes and higher-order DG method on the tests from the Quirk list, namely: Quirk's problem and its modifications, shock wave diffraction at a 90 degree corner, the problem of double Mach reflection. It is shown that the use of HLLC and Godunov's numerical schemes flows in calculations can lead to instability, the Rusanov-Lax-Friedrichs scheme flow can lead to high dissipation of the solution. The most universal in heavy production calculations are hybrid schemes flows, which allow the suppression of the development of instability and conserve the accuracy of the method.