• Title/Summary/Keyword: Discharging voltage

Search Result 288, Processing Time 0.028 seconds

Design of Double Digital Controller to Improve Performance for the Silent Discharging Ozonizer (무성방전 오조나이저의 성능개선을 위한 2중 디지털 제어기의 설계)

  • Park, Jee-Ho;Kim, Dong-Wan;Woo, Sung-Hoon;Roh, In-Bae;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In this paper, a control method of ozone generator for a tiny deodorizer is proposed, and also a cooling technique is described which is cooling down the flowing air gap into a silent discharger to $2[^{\circ}C]$ to generate ozone of high density and diffusing power. As the digital control system for this method, a double feedback loop is designed which detects the voltage and current of equivalent capacitor of the discharger and compensates for the poor power waveform caused by the noise at high discharging frequency. During the plant modeling of this system, computing time factor is considered as a unique parameter of the power system to improve the respond characteristics with regard to fluctuating load and to replenish the computing time delay of the controller. Through the experiment, sinusoidal input current for discharger can be acquired and all the effectiveness of this accurate control system over unstable ozone discharger are proved.

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Optimization of MgO Evaporation for PDP Efficiency and Discharging Characterization (프라즈마 디스플레이 패널의 고효율화를 위한 MgO 증착 조건의 최적화 및 PDP 방전특성 분석)

  • Kwon, Sang-Jik;Kim, Yong-Jae;Li, Zhao-Hui;Kim, Kwang-Ho;Yang, Soon-Seuk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.569-570
    • /
    • 2006
  • Effects of the evaporation rate of MgO films using electron beam were investigated on the MgO properties and the discharge characteristics of the plasma display panel (PDP). The evaporation rate was changed from $3{\AA}$/sec to $15{\AA}$/sec at a substrate temperature of $300^{\circ}C$. MgO properties such as crystal orientation, surface roughness, contact angle, and film structure were inspected using XPS, AFM, drop shape analysis and SEM. We also studied the relation between MgO properties and PDP discharging characteristics. The minimum firing voltage and maximum efficacy were obtained at evaporation rate of $5{\AA}$/sec. In the MgO film deposited at $5{\AA}$/sec, (200) orientation was most intensive and surface roughness was minimum.

  • PDF

Design of Seawater Rechargeable Battery Package and BMS Module for Marine Equipment (해양기기 적용을 위한 해수이차전지 패키지 및 BMS 모듈 설계)

  • Kim, Hyeong-Jun;Lee, Kyung-Chang;Son, Ho-Jun;Park, Shin-Jun;Park, Cheol-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2022
  • The design of a battery package and a BMS module for applications using seawater rechargeable batteries, which are known as next-generation energy storage devices, is proposed herein. Seawater rechargeable batteries, which are currently in the initial stage of research, comprise primarily components such as anode and cathode materials. Their application is challenging owing to their low charge capacity and limited charge/discharge voltage and current. Therefore, we design a method for packaging multiple cells and a BMS module for the safe charging and discharging of seawater rechargeable batteries. In addition, a prototype seawater rechargeable battery package and BMS module are manufactured, and their performances are verified by evaluating the prevention of overcharge, overdischarge, overcurrent, and short circuit during charging and discharging.

LDO Regulator with Improved Transient Response Characteristics and Feedback Voltage Detection Structure (Feedback Voltage Detection 구조 및 향상된 과도응답 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.313-318
    • /
    • 2022
  • The feedback voltage detection structure is proposed to alleviate overshoot and undershoot caused by the removal of the existing external output capacitor. Conventional LDO regulators suffer from overshoot and undershoot caused by imbalances in the power supply voltage. Therefore, the proposed LDO is designed to have a more improved transient response to form a new control path while maintaining only the feedback path of the conventional LDO regulator. A new control path detects overshoot and undershoot events in the output stage. Accordingly, the operation speed of the pass element is improved by charging and discharging the current of the gate node of the pass element. LDO regulators with feedback voltage sensing architecture operate over an input voltage range of 3.3V to 4.5V and have a load current of up to 200mA at an output voltage of 3V. According to the simulation result, when the load current is 200mA, it is 73mV under the undershoot condition and 61mV under the overshoot condition.

A Study on the Smoke Removal Characteristics of the ESP Adopting Resonant dc-dc Converter

  • Kim, Su-Weon;Park, Jong-Woong;Joung, Jong-Han;Chung, Hyun-Ju;Choi, Jin-Young;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, we propose a small high voltage power supply, which uses a half-bridge ZCS resonant and Cockroft-Walton circuit as its ESP (Electrostatic Precipitator). This power supply transfers energy from the ZCS resonant inverter to the step-up transformer. The transformer secondary is then applied to the Cockroft-Walton circuit for generating high voltage as a discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. Using this power supply, experiments have been carried out as a function of the switching frequency and duty ratio in order to investigate the smoke removal characteristics. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50% in this ESP.

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Fabrication of ZnO Nanorod based Robust Nanogenerator Metal Substrate (금속 기판적용을 통한 ZnO 나노로드기반 나노제너레이터 제조)

  • Baek, Seong-Ho;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.331-336
    • /
    • 2015
  • We report on the succesful fabrication of ZnO nanorod (NR)-based robust piezoelectric nanogenerators (PNGs) by using Cu foil substrate. The ZnO NRs are successfully grown on the Cu foil substrate by using all solution based method, a two step hydrothermal synthesis. The ZnO NRs are grown along c-axis well with an average diameter of 75~80 nm and length of $1{\sim}1.5{\mu}m$. The ZnO NRs showed abnormal photoluminescence specrta which is attributed from surface plasmon resonance assistant enhancement at specific wavelength. The PNGs on the SUS substrates show typical piezoelectric output performance which showing a frequency dependent voltage enhancement and polarity dependent charging and discharging characteristics. The output voltage range is 0.79~2.28 V with variation of input strain frequency of 1.8~3.9 Hz. The PNG on Cu foil shows reliable output performance even at the operation over 200 times without showing degradation of output voltage. The current output from the PNG is $0.7{\mu}A/cm^2$ which is a typical out-put range from the ZnO NR-based PNGs. These performance enhancement is attributed from the high flexibility, high electrical conductivity and excellent heat dissipation properties of the Cu foil as a substrate.

A Study on the Grounding Resistance Effects of Lightning Arrester for Lightning Stroke Protection in Electric Distribution Systems (배전계통에서 낙뢰보호용 피뢰기의 접지저항 영향에 관한 연구)

  • Kim, Kyung-Chul;Jung, Ji-Won;Lee, Kyu-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.107-114
    • /
    • 2010
  • Lightning is the discharging of high-voltage charged cells within clouds to earth other or to the earth. Lightning protection grounding is essential for the protection of buildings, distribution lines, and electrical equipment from lightning surges. Equipment grounding is for the purpose of controlling the voltage to earth within predictable limits. This paper investigates the effects of lightning arrester grounding resistance by analysing the neutral to earth voltages and arrester break down voltages when the lightning strike hits the distribution line. The case study was simulated numerically and graphically through the use of the EDSA software program.