• Title/Summary/Keyword: Discharge withstand

Search Result 31, Processing Time 0.03 seconds

On-line and Off-line Partial Discharge Monitoring System with HVAC Testing (HVAC에 의한 On-line, Off-line PD 모니터링)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.111-114
    • /
    • 2008
  • The paper considers the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is described.

  • PDF

On-line Condition Monitoring for Electric Equipments (전력 설비 시스템의 온라인 감시)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.103-105
    • /
    • 2008
  • In, this paper, we consider the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PO) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PO testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PO measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is described.

  • PDF

On-Line System for Partial Monitoring Discharge (온라인 부분방전 감시 시스템)

  • Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2114-2115
    • /
    • 2008
  • We consider the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers is described.

  • PDF

A Basic Study on the Application of Partial Discharge Test on Low-voltage Electrical and Electronic Devices (저압용 전기전자기기에 부분방전시험의 적용을 위한 기초연구)

  • Kil Gyung-Suk;Song Jae-Yong;Moon Seung-Bo;Cha Myung-Soo;Hwang Don-Ha;Kang Dong-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • This paper deals with the application of a partial discharge (PD) test on low-voltage electrical and electronic devices, which is recently being accepted as a non-destructive and a effective dielectric test method. A comparative analysis combined with the Withstand Voltage Test (WVT) specified in IEC standards was carried out on low-voltage insulation transformers. The results showed that the WVT causes insulation degradation of the specimen during the test by applying high voltage. However, the PD test can be performed in ranges from 30 % to 50 % of the test voltage specified in the WVT. Therefore, the PD test is successfully applicable for a non-destructive test method on low-voltage electrical and electronic devices as a replacement of the WVT.

Insulation Characteristics of High Temperature Superconducting Cable (고온 초전도 레이블의 절연 특성)

  • Kim, H.J.;Kim, J.H.;Sim, K.D.;Kim, H.J.;Cho, J.W.;Seong, K.C.;Kwag, D.S.;Kim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.244-247
    • /
    • 2004
  • The electrical insulating design is important to realize a HTS power cable because the cable is operated under the high voltage environment. For the insulation design of a HTS power cable, it is necessary to investigate the AC, impulse breakdown and partial discharge(PD) inception stress of liquid nitrogen/LPP composite insulation system. Based on these results, the electrical insulation of a HTS power cable is designed and Mini-model cables are manufactured. The manufactured Mini-model cables are evaluated that AC, impulse withstand voltage, breakdown and partial discharge inception stress and analyzed characteristics insulation of HTS cable bending condition according to this paper. From these tests, the AC, impulse withstand voltage test and partial discharge inception stress is satisfied "standard technical specification of KEPCO" in Korea and the breakdown voltage was 120kV.

  • PDF

A Safety Assessment of Splice of 6/10[kV] Class CV Cables with Different Conductor Size (다른 굵기의 6/10[kV]급 CV 케이블 직선접속부 안전성 평가)

  • Jung, Jong-Wook;Kim, Sun-Gu;Jung, Jin-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.78-84
    • /
    • 2010
  • This paper describes the safety assessment of power cable splices connecting different sized 6/10[kV] class power cables. To assess the safety, AC withstand voltage tests, partial discharge tests and impulse tests were carried out to the cable splice specimens and thermal rise due to overload and cross section of joint were examined as well. As a result, a breakdown due to the $4.5[U_0](27[kV_{ac}])$ application could not found for 5 minutes. Under $1.73[U_0](10.4[kV_{ac}])$ application, partial discharges of 4~8[pC] were detected. In impulse tests, all the specimens withstood to the standard waveforms of $75[kV_{peak}](1.2{\times}50[{\mu}s])$ without any breakdowns. In addition, the temperature on the splice rose by $3[^{\circ}C]$ when the 200[A] flew through the splice for 20minutes, however the thermal rise of $3[^{\circ}C]$ was considered due to the atmospheric temperature. After all the electrical tests, the cross section of the splice was visually examined. The conditions of the conductors of both $185[mm^2]$ and $240[mm^2]$ were good.

Research on Multi-layered Effect for the Insulation Design of a HTS Cable (고온초전도 케이블의 절연설계를 위한 적층효과에 관한 연구)

  • Kwag, Dong-Soon;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Hae-Joon;Kim, Jae-Ho;Cheon, Hyeon-Gweon;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.560-561
    • /
    • 2005
  • For the insulation design of a HTS cable, the withstand voltage of three kinds were proposed. One of them is the AC design withstand voltage, another is the impulse design withstand voltage, and the other is the partial discharge inception stress. However, the multi-layered effect was not considered on insulation design of a HTS cable at existent design process. Therefore in this paper, the electrical breakdown characteristics by multi-layered effect of LPP insulation paper were investigated. Based on these results, the insulation thickness of 22.9 kV class HTS cable was designed, and compared with existent design process.

  • PDF

A Research Trend on On-Line/Off-Line PD Insulation Diagnostic System (온라인 및 오프라인 PD 모니터링에 관한 연구 동향)

  • Choo, Jong-Hoon;Hong, Chang-Il;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2008-2009
    • /
    • 2007
  • The paper considers the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Because alternating voltage (AC) is the most important test voltage, the AC generation on site is considered. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers - is introduced.

  • PDF

Partial Discharge Process and Characteristics of Oil-Paper Insulation under Pulsating DC Voltage

  • Bao, Lianwei;Li, Jian;Zhang, Jing;Jiang, Tianyan;Li, Xudong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.436-444
    • /
    • 2016
  • Oil-paper insulation of valve-side windings in converter transformers withstand electrical stresses combining with AC, DC and strong harmonic components. This paper presents the physical mechanisms and experimental researches on partial discharge (PD) of oil-paper insulation at pulsating DC voltage. Theoretical analysis showed that the phase-resolved distributions of PDs generated from different insulated models varied as the increase of the applied voltages following a certain rule. Four artificial insulation defect models were designed to generate PD signals at pulsating DC voltages. Theoretical statements and experimental results show that the PD pulses first appear at the maximum value of the applied pulsating DC voltage, and the resolved PD phase distribution became wider as the applied voltage increased. The PD phase-resolved distributions generated from the different discharge models are also different in the phase-resolved distributions and development progress. It implies that the theoretical analysis is suitable for interpretation of PD at pulsating DC voltage.

Implementation of Power Cable Diagnostic Simulator using VLF (VLF를 활용한 전력케이블 진단 시뮬레이터 구현)

  • Kim, Kuk;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.593-602
    • /
    • 2020
  • Power cables installed in domestic factories or underground can cause accidents depending on the manufacturing process, installation, and environmental conditions during use. When an accident occurs in a power cable, it can cause enormous economic loss and social confusion. Hence, the importance of preventive management of the cable through diagnosis is increasing to prevent it. Therefore, in this paper, a diagnostic sample cable was produced by simulating a part that could be a problem due to the installation, manufacturing defects, or deterioration of cables that can occur in the field. Dielectric loss Tangent (tan 𝛿; TD), and Partial Discharge(PD) tests were performed. Partial discharge and AC (60Hz) withstand voltage equipment using High-Frequency Current Transformer (HFCT) were applied After applying a VLF (Very Low Frequency) power supply with a frequency of 0.1Hz was applied. As a result, B and C phase defect samples at a 2.0U0 voltage through the VLF could measure the internal partial discharge in the A-phase normal sample cable from the noise at a 0.5U0 to 2.0U0 voltage. In addition, the 1.5U0 voltage was measured through the AC (60Hz) withstand voltage equipment of the commercial frequency to verify its effectiveness. Partial discharge in the run-off state was measured at a voltage of 1.0U0, and there was a risk when installing the equipment. AC power equipment showed a difficulty of movement by volume or weight. The diagnostic method, through the VLF of the quadrant state, revealed its safety and effectiveness.