• Title/Summary/Keyword: Disaster information

Search Result 3,479, Processing Time 0.024 seconds

A Study on the Environmental Application of Image Radar for Expanding the Use of Next Generation Medium Satellite 5 (차세대중형위성 5호 활용 확대를 위한 영상레이더의 환경분야 활용 방안 연구)

  • Han, Hyeon-gyeong;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1251-1260
    • /
    • 2019
  • Existing environmental spatial information, which has been concentrated on spatial resolution, has limitations in solving realistic environmental problems that must be accompanied by physical and chemical characterization. Accordingly, there is a need for an image radar capable of identifying physical characteristics of an object regardless of weather conditions, day and night, and sunlight. Image radar is used in various fields in the United States and Europe. The next generation of medium-sized satellite No. 5 in Korea, which is under development with the aim of monitoring water disasters, is also looking for ways to expand the scope to various applications based on the existing application range. To this end, we analyzed domestic and international papers (100 works) using image radar, and reviewed KEI 2016 report, domestic papers, and foreign papers. Based on this, various environmental issues were summarized and the effects of when the image radar was used were analyzed and land cover was selected as an environmental issue. In the future, we will embody the technology to improve the accuracy of the land cover map, which is the environmental issue selected in this study, and build the foundation system for the stable use of the land cover map.

The Analysis of Volcanic-ash-deposition Damage using Spatial-information-based Volcanic Ash Damage Sector and Volcanic Ash Diffusion Simulation of Mt. Aso Volcano Eruption Scenario (공간정보 기반의 국내 화산재 피해 분야와 아소산 화산재 모의 확산 시나리오를 활용한 화산재 누적 피해 분석)

  • Baek, Won-Kyung;Kim, Miri;Han, Hyeon-gyeong;Jung, Hyung-Sup;Hwang, Eui-Hong;Lee, Haseong;Sun, Jongsun;Chang, Eun-Chul;Lee, Moungjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1221-1233
    • /
    • 2019
  • Estimating damage in each sector that can be caused by volcanic ash deposition, is very important to prepare the volcanic ash disaster. In this study, we showed predicted-Korean-volcanic-ash damage of each sector by using volcanic ash diffusion simulation and spatial-data-based volcanic ash damage sector in previous study. To this end, volcanic ash related base maps were generated by collecting and processing spatial information data. Finally, we showed Korean-volcanic-ash-deposition damages by sector using the collected Mt. Aso volcanic ash scenarios via overlapping analysis. As a result, volcanic-ash-related damages were expected to occur in the 162 and 134 districts for each Aso volcanic ash scenarios, since those districts exceeds the minimum volcanic ash damage criterion of 0.01 mm. Finally, we compared possible volcanic ash damages by sectors using collected and processed spatial data, after selecting administrative districts(Scenario 190805- Kangwon-do, Kyungsangbuk-do; Scenario 190811-Chuncheon-si, Hongcheon-si) with the largest amount of volcanic ash deposition.

A Case Study for Evaluating Forest Functions by Watershed Unit: Gyeongsangnam-do (경상남도 유역단위 산림기능평가에 관한 사례연구)

  • Kim, Hyung-Ho;Park, Young-Kyu;Roh, Hye-Jung;Jeon, Jun-Heon;Hwang, Jin-Yeong;Kang, Hyeon-Deug;Park, Joon-Hyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.163-173
    • /
    • 2011
  • This paper, as a case study on the evaluation of nationwide-unit forest functions, targeting the entire Gyeongsangnam-do region, examined the integration measures for the evaluation of national, public and private forest functions, as well as GIS data problems and GIS data building methods. Also, the distribution and characteristics of Gyeongsangnam-do's forest functions were examined. First, as integration measures for forest function evaluation, evaluation unit was proposed as watershed unit, and GIS techniques were proposed to correct some patterns of errors shown in the watershed maps. Also, of GIS data used for forest function evaluation, maps of locations of saw mills to be revised, expressway interchange location maps, and population distribution maps were built nationwide. Based on watershed units, the forest functions of 20 cities and counties in Gyeongsangnam-do were evaluated, revealing that wood production function and forest recreation function potentials, high-ranking was high distributed throughout the site, while most functions potentials, low-ranking was low distributed. In forest function maps with the application of priority by city and gun, the area size was ranked in the order of forest recreation, timber production, natural conservation, water yield, living environment conservation, and prevention of natural disaster. Case analysis results for large areas can be used in evaluating nationwide forest functions.

Data Acquisition using Terrestrial Laser Scanner and RTK-GPS for Implementation of Beach Model (해빈 모형 구현을 위한 지상용 레이저 스캐너와 RTK-GPS의 자료 획득)

  • Lee, Hyung-Seok;Kim, In-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.54-63
    • /
    • 2009
  • Various methods have been employed for acquiring beach surface data, which are used to monitor shoreline changes due to beach erosion. This study explores the possibility of constructing and implementing a surface model of beach using data acquired with a terrestrial laser scanner and RTK-GPS. Digital images and three-dimensional data of beach areas acquired at 20 cm intervals using a laser scanner were used to create a digital surface model covered with digital image. Seven months later, the beach area was surveyed using an RTK-GPS, and another beach model was constructed using the data collected with an accuracy of 1.9 cm. The use of a terrestrial laser scanner is expected to ensure acquisition of good quality results and help deal with seasonal changes in beach areas. Because readings obtained with the RTK-GPS are dependent on the number of sampling points in beach model, difficulties are encountered when fixing the survey points. However, RTK-GPS could be used to implement a three-dimensional model by correcting the hidden parts in images obtained using a terrestrial laser scanner. Therefore, an RTK-GPS and a terrestrial laser scanner can be used in combination to obtain more precise data for the construction of beach model data.

  • PDF

DAD Analysis of Yongdam Dam Watershed Using the Cell-Based Automatic Rainfall Field Tracking Methods (격자기반의 자동 강우장 탐색기법을 활용한 용담댐 유역 DAD분석)

  • Song, Mi-Yeon;Jung, Kwan-Sue;Lee, Gi-Ha;Kim, Yeon-Su;Shin, Young-A
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.68-81
    • /
    • 2014
  • This study aims to apply and evaluate the automatic DAD analysis method, which is able to establish the depth-area relationship more efficiently and accurately for point-to-areal rainfall conversion. First, the proposed automatic DAD analysis method tracks the expansion route of area from the storm center, and it is divided into Box-tracking, Point-tracking, Advanced point-tracking according to tracking method. After applying the proposed methods to 10 events occurred in Yongdam-watershed area, we confirmed that the Advanced point-tracking method makes it possible to estimate the maximum average areal rainfal(MAAR) more accurately with consideration of the storm movement and the multi-centered storm. In addition, Advanced point-tracking could reduce the errors of the estimated MAAR induced by increasing the area because it can estimate MAAR for each storm center and compare them at the same time. Finally, the DAD curve for the study area could be derived based on the DAD analysis of the selected 10 events.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results (기후변화 시나리오를 이용한 광역 사면안정 해석(2): 결과분석)

  • Oh, Sung-Ryul;Lee, Gi-Ha;Choi, Byoung-Seub;Lee, Kun-Hyuk;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2014
  • This study aims to assess the slope stability variation of Jeonbuk drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the previous research by Choi et al.(2013). For a large-scale slope stability analysis, we developed a GIS-based database regarding topographic, geologic and forestry parameters and also calculated daily maximum rainfall for the study period(1971~2100). Then, we assess slope stability variation of the 20 sub-catchments of Jeonbuk under the climate change scenario. The results show that the areal-average value of safety factor was estimated at 1.36(moderately stable) in spite of annual rainfall increase in the future. In addition, 7 sub-catchments became worse and 5 sub-catchments became better than the present period(1971~2000) in terms of safety factor in the future.

Chemical Weathering Index of Clastic Sedimentary Rocks in Korea (국내 쇄설성 퇴적암의 화학적 풍화지수 고찰)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Kim, Jong-Woo;Kim, Tae-Hyung;Lee, Kyu-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.67-79
    • /
    • 2017
  • Evaluation of the weathering index using the quantitative element composition of rocks is very effective in predicting the degree of weathering of rocks and the secondary weathering residuals. While the process of weathering varies according to the types of rocks, the study of weathering in Korea is concentrated on acidic igneous rocks. This study calculated the weathering indices using whole rock analysis (X-ray fluorescence analysis) of sandstone, mudstone, and shale belonging to clastic sedimentary rocks. The statistical significance of the indices was examined based on the correlation of the calculated weathering indices. Clastic sedimentary rocks showed higher significance of Wp, CIA, CIW and PIA weathering index indicating weathering of feldspar. Chemical Index of alteration (CIA) has the advantage of predicting weathering pathway and clay mineral production, but it is effective to consider chemical index of weathering index (CIW) simultaneously to improve accuracy. In order to reduce uncertainties due to carbonate rocks and to estimate the accurate weathering index, rock samples with high CaO content should be excluded from the evaluation of weathering index.

3D GIS Network Modeling of Indoor Building Space Using CAD Plans (CAD 도면을 이용한 건축물 내부 공간의 3차원 GIS 네트워크 모델링)

  • Kang Jung A;Yom Jee-Hong;Lee Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • Three dimensional urban models are being increasingly applied for various purposes such as city planning, telecommunication cell planning, traffic analysis, environmental monitoring and disaster management. In recent years, technologies from CAD and GIS are being merged to find optimal solutions in three dimensional modeling of urban buildings. These solutions include modeling of the interior building space as well as its exterior shape visualization. Research and development effort in this area has been performed by scientists and engineers from Computer Graphics, CAD and GIS. Computer Graphics and CAD focussed on precise and efficient visualization, where as GIS emphasized on topology and spatial analysis. Complementary research effort is required for an effective model to serve both visualization and spatial analysis purposes. This study presents an efficient way of using the CAD plans included in the building register documents to reconstruct the internal space of buildings. Topological information was built in the geospatial database and merged with the geometric information of CAD plans. as well as other attributal data from the building register. The GIS network modeling method introduced in this study is expected to enable an effective 3 dimensional spatial analysis of building interior which is developing with increasing complexity and size.

Development and Assessment of Flow Nomograph for the Real-time Flood Forecasting in Cheonggye Stream (청계천 실시간 홍수예보를 위한 Flow Nomograph 개발 및 평가)

  • Bae, Deg-Hyo;Shim, Jae Bum;Yoon, Seong-Sim
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1107-1119
    • /
    • 2012
  • The objectives of this study are to develop the flow nomograph for real-time flood forecasting and to assess its applicability in restored Cheonggye stream. The Cheonggye stream basin has the high impermeability and short concentration time and complicated hydrological characteristics. Therefore, the flood prediction method using runoff model is ineffective due to the limit of forecast. Flow nomograph which is able to forecast flood only with rainfall information. To set the forecast criteria of flow nomograph at selected flood forecast points and calculated criterion flood water level for each point, and in order to reflect various flood events set up simulated rainfall scenario and calculated rainfall intensity and rainfall duration time for each condition of rainfall. Besides, using a rating curve, determined scope of flood discharge following criterion flood water level and using SWMM model calculated flood discharge for each forecasting point. Using rainfall information following rainfall scenario calculated above and flood discharge following criterion flood water level developed flow nomograph and evaluated it by applying it to real flood event. As a result of performing this study, the applicability of flow nomograph to the basin of Cheonggye stream appeared to be high. In the future, it is reckoned to have high applicability as a method of prediction of flood of urban stream basin like Cheonggye stream.

Development and Verification of A Module for Positioning Buried Persons in Collapsed Area (붕괴지역의 매몰자 위치측위를 위한 모듈 개발 및 검증)

  • Moon, Hyoun-Seok;Lee, Woo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.427-436
    • /
    • 2016
  • Due to disasters such as earthquakes and landslides in urban areas, persons have been buried inside collapsed buildings and structures. Rescuers have mainly utilized detection equipment by applying sound, video and electric waves, but these are expensive and due to the directional approaches onto the collapsed site, secondary collapse risk can arise. In addition, due to poor utilization of such equipment, new human detection technology with quick and high reliability has not been utilized. To address these issues, this study develops a wireless signal-based human detection module that can be loaded into an Unmanned Aerial Vehicle (UAV). The human detection module searches for the 3D location for buried persons by collecting Wi-Fi signal and barometer sensors data transmitted from the mobile phones. This module can gain diverse information from mobile phones for buried persons in real time. We present a development framework of the module that provides 3D location data with more reliable information by delivering the collected data into a local computer in the ground. This study verified the application feasibility of the developed module in a real collapsed area. Therefore, it is expected that these results can be used as a core technology for the quick detection of buried persons' location and for relieving them after disasters that induce building collapses.