DOI QR코드

DOI QR Code

Chemical Weathering Index of Clastic Sedimentary Rocks in Korea

국내 쇄설성 퇴적암의 화학적 풍화지수 고찰

  • Kim, Sung-Wook (Geo-information Research Group Co. Ltd.) ;
  • Choi, Eun-Kyoung (Geo-information Research Group Co. Ltd.) ;
  • Kim, Jong-Woo (Department of Civil and Environmetal Engineering, Korea Maritime and Ocean University) ;
  • Kim, Tae-Hyung (Department of Civil and Environmetal Engineering, Korea Maritime and Ocean University) ;
  • Lee, Kyu-Hwan (Department of Disaster Safety & Firefighting, Konyang University)
  • 김성욱 ((주)지아이 지반정보연구소) ;
  • 최은경 ((주)지아이 지반정보연구소) ;
  • 김종우 (한국해양대학교 건설공학과) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 이규환 (건양대학교 재난안전소방학과)
  • Received : 2017.03.03
  • Accepted : 2017.03.25
  • Published : 2017.03.31

Abstract

Evaluation of the weathering index using the quantitative element composition of rocks is very effective in predicting the degree of weathering of rocks and the secondary weathering residuals. While the process of weathering varies according to the types of rocks, the study of weathering in Korea is concentrated on acidic igneous rocks. This study calculated the weathering indices using whole rock analysis (X-ray fluorescence analysis) of sandstone, mudstone, and shale belonging to clastic sedimentary rocks. The statistical significance of the indices was examined based on the correlation of the calculated weathering indices. Clastic sedimentary rocks showed higher significance of Wp, CIA, CIW and PIA weathering index indicating weathering of feldspar. Chemical Index of alteration (CIA) has the advantage of predicting weathering pathway and clay mineral production, but it is effective to consider chemical index of weathering index (CIW) simultaneously to improve accuracy. In order to reduce uncertainties due to carbonate rocks and to estimate the accurate weathering index, rock samples with high CaO content should be excluded from the evaluation of weathering index.

암석내 화학종의 함량을 이용한 풍화지수는 암석의 풍화 정도와 2차 광물의 생성을 예측하는데 매우 효과적이다. 풍화의 과정은 암석의 종류에 따라 다르게 나타나는데 국내의 경우 화강암의 분포 면적이 넓은 이유로 풍화지수의 연구는 산성질 화성암에 편중되어 왔다. 이 연구는 쇄설성 퇴적암에 속하는 사암, 이암, 셰일의 전암분석(X-선 형광분석)을 이용하여 풍화지수들을 산정하고, 상관성 분석을 통해 지수들의 유의성을 검토하였다. 쇄설성 퇴적암 중 장석의 비중이 높게 나타나는 사암과 셰일의 경우 장석의 풍화를 나타내주는 Wp, CIA, CIW, PIA 풍화지수가 높은 유의성을 보였다. 화학적 변질지수(CIA)는 풍화경로와 변질점토의 생성을 예측할 수 있는 장점이 있으나 풍화 정도의 변별력을 높이기 위해 화학적 풍화지수를 동시에 고려하는 것이 효과적이다. 탄산염 계열의 광물이 포함된 경우 이에 대한 효과를 산정식을 통해 제거하지 못하였고 정확한 풍화지수 산정을 위해 X-선 회절분석 등을 통해 탄산염 물질의 함량이 높은 시료는 분석과정에서 배제해야 한다.

Keywords

References

  1. Anderson, J. L. and Bender, E. E., 1989, Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America, Lithos, 23(1-2), 19-52. https://doi.org/10.1016/0024-4937(89)90021-2
  2. Banfield, J. F. and Eggleton, R. A., 1988, Transmission electron microscope study of biotite weathering, Clays and Clay Minerals, 36, 47-60. https://doi.org/10.1346/CCMN.1988.0360107
  3. Carmichael, I. S. E., Turner, F. J., and Verhoogan, J., 1974, Igneous petrology: New York, McGraw-Hill, 739p.
  4. Chang, S. M., 2003, Evaluation on weathering intensity and rock mass properties of weathered granite, PhD thesis, Dankook University, 179p (in Korean with English abstract).
  5. Chesworth, W., 1973, The residual system of chemical weathering: a model for the chemical breakdown of silicate rocks at the surface of the earth, Journal of Soil Science Journal, 24, 69-81. https://doi.org/10.1111/j.1365-2389.1973.tb00742.x
  6. Choi, E. K., 2011, A study on the chemical index of alteration (CIA) and geotechnical properties of igneous rocks by weathering, PhD thesis, Pusan National University, 199p (in Korean with English abstract).
  7. Choi, E. K., Kim, S. W., Kim, I. S., and Lee, K. H., 2012, A study on the chemical index of alteration of igneous rocks, Journal of the Korean Geotechnical Society, 28(3), 41-54 (in Korean with English abstract).
  8. Choi, S. H., Lee, J. H., Oh, C. W., Lee, K. H., and Kim, S. W., 2014, A study on the change of biotite granite by the artificial weathering experiment, Proceedings of the Annual Joint Conference, the Petrological Society of Korea and the Mineralogical Society of Korea, 114-116 (in Korean with English abstract).
  9. Condie, K. C., Dengate, J., and Cullers, R. L., 1995, Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA, Geochimica et Cosmochimica Acta, 59, 279-294. https://doi.org/10.1016/0016-7037(94)00280-Y
  10. Cox, K. G., Bell, J. D., and Pankhurst, R. J., 1979, The interpretation of igneous rocks: London, George Allen & Unwin, 450p.
  11. De Jayawardena, U. S. and IZawa, E., 1994 A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka, Engineering Geology, 36, 303-310. https://doi.org/10.1016/0013-7952(94)90011-6
  12. De Ros, L. F., Sgarbi, G. N. C., and Morad, S., 1994, Multiple authigenesis of K-feldspar in sandstones: Evidence from the Cretaceous Areado Formation, San Francisco basin, central Brazil: Journal of Sedimentary Research, A64, 778-787.
  13. Delvaux, B., Herbillon, A. J., and Vieloye, L., 1989, Characterization of a weathering sequence of soils derived from volcanic ash in Cameroon, taxonomic, mineralogical and agronomic implications, Geoderma, 45, 375-388. https://doi.org/10.1016/0016-7061(89)90017-7
  14. Fedo, C. M., Nesbitt, H. W., and Young, G. M., 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance, Geology, 23(10), 921-924. https://doi.org/10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
  15. Gilkes, R. J. and Suddhiprakarn, A., 1979a, Biotite in deeply weathered granite; I, Morphologic, mineralogical, and chemical properties, Clays and Clay Minerals, 27(5), 349-360. https://doi.org/10.1346/CCMN.1979.0270505
  16. Gilkes, R. J. and Suddhiprakarn. A., 1979b, Biotite alteration in deeply weathered granite; II, The oriented growth of secondary minerals, Clays and Clay Minerals, 27(5), 361-367. https://doi.org/10.1346/CCMN.1979.0270506
  17. Goldich, S. S., 1938, A study in rock weathering, The Journal of Geology, 46, 17-58. https://doi.org/10.1086/624619
  18. Gupta, A. S. and Rao S. K., 2001, Weathering indices and their applicability for crystalline rocks, Bulletin of Engineering Geology and the Environment, 60(3), 201-221. https://doi.org/10.1007/s100640100113
  19. Harnois, L., 1988, The CIW index: a new chemical index of weathering, Sedimentary Geology, 55(3-4), 319-322. https://doi.org/10.1016/0037-0738(88)90137-6
  20. Harris, W. G., Zelazny, J. C., Baker, J. C., and Martens, D. C., 1985, Biotite kaolinization in Virginia Piedmont soils: I. Extent, profile trends, and grain morphological effects, Soil Science Society of America Journal, 49(5), 1290-1297. https://doi.org/10.2136/sssaj1985.03615995004900050044x
  21. Irfan, T. Y., 1996, Mineralogy, fabric properties and classification of weathered granites in Hong Kong, Quarterly Journal of Engineering Geology and Hydrogeology, 29, 5-35. https://doi.org/10.1144/GSL.QJEGH.1996.029.P1.02
  22. Jeong, G. Y. and Kim, H. B., 2002, Oxidized biotite in the weathering profile of Andong Granite, Journal of the Mineralogical Society of Korea, 15, 183-194 (in Korean with English abstract).
  23. Korea Institute of Geoscience and Mineral Resources, 1995, Geology of Korea (1:1,000,000).
  24. Kim, S. W., Jung, S. J., Choi, E. K., Kim, S. H., Lee, K. H., Oh, J. L., and Park, D. G., 2013, Time status of slope collapse for 1999-2011, in Korea, Journal of the Geological Society of Korea, 49(6), 669-681 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2013.49.6.669
  25. Kim, Y. S., Kim, G. W., Heo, N. Y., Rui, D. H., Lee, J. H., and Choi, J. H., A study on the geotechnical assessment of sedimentary rocks due to weathering in Taegu area, Proceedings of the KSEG 11, 15-22 (in Korean with English abstract).
  26. Lee, S. H. and Kim, S. J., 2004, Weathering characteristics of sedimentary rocks affected by periodical submerging, Journal of Mineralogical Society of Korea, 17(1), 23-35 (in Korean with English abstract).
  27. Marsh, J. S., 1991, REE fractionation and Ce anomalies in weathered Karoo dolerite, Chemical Geology, 90, 189-194. https://doi.org/10.1016/0009-2541(91)90099-D
  28. Mason, B. H., 1966, Principles of geochemistry (2rd ed.): New York, John Wiley and Sons, 329p.
  29. Maynard, J. B., 1992, Chemistry of modern soils as a guide to interpreting Precambrian paleosols: Journal of Geology, 100, 279-289. https://doi.org/10.1086/629632
  30. Nam, K. S., 1971, Variation of chemical composition and relative movement of important elements on the weathering of granitic and basaltic rocks, Journal of the Geological Society of Korea, 7(4), 227-290 (in Korean with English abstract).
  31. Nam, K. S., 1987, Variation of chemical composition and relative movement of major elements on the weathering of granitic and basaltic rocks, PhD thesis, Chonbuk national university, 90p (in Korean with English abstract).
  32. Nam, K. S. and Cho, K. S., 1993, Relative of major elements on the weathering of rocks, Journal of Korean Institute of Mining geology, 26(1), 97-81 (in Korean with English abstract).
  33. National Disaster Management Research Institute, 2010, Improvement of disaster warning system for steep slope, NIDP-PR-2010-01-02, 304p (in Korean with English abstract).
  34. National Disaster Management Research Institute, 2013, A study on the failure characteristics and safety factors of steep slopes based on the rainfall infiltration analysis - unsaturated characteristics and steep-slope risk evaluation of weathered metamorphic soil test-beds, NDMI-PR-2013-19-02, 308p (in Korean with English abstract).
  35. Nesbitt, H. W. and Young, G. M., 1982 Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, 715-717. https://doi.org/10.1038/299715a0
  36. Parker, A., 1970, An index of weathering for silicate rocks, Geological Magazine, 501-504.
  37. Price, J. R. and Velbel, M. A., 2003, Chemical weathering indices applied to weathering profile developed on heterogeneous felsic metamorphic parent rocks, Chemical Geology, 202, 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001
  38. Rebertus, R. A., Weed, S. B., and Boul, S. W. 1986, Transformation of biotite to kaolinite during saprolite-soil weathering, Soil Science Society of America Journal, 50, 810-819. https://doi.org/10.2136/sssaj1986.03615995005000030049x
  39. Reiche, P., 1943, Graphic representation of chemical weathering, Journal of Sedimentary Petrology, 13, 58-68.
  40. Ruxton, B. P., 1968, Measures of the degree of chemical weathering of rocks, Journal of Geology 76, 518-527. https://doi.org/10.1086/627357
  41. Smith, J. V., 1974, Feldspar minerals 2: Chemical and textural properties: Berlin, Springer-Verlag, 690p.
  42. Sueoka, T., 1988, Identification and classification of granite residual soils using chemical weathering index, Symposium on The Weathering Residual Soil, 89-94.
  43. Vogel, D. E., 1975, Precambrian weathering in acid metavolcanic rocks from the Superior Province, Villebon Township, South - Central Quebec, Canadian Journal of Earth Sciences, 12, 2080-2085. https://doi.org/10.1139/e75-183
  44. Vogt, T., 1927, Sulitjelmafeltets geologi og petrografi, Norges Geologiske Undersokelse, 121, 560p.
  45. Werner, B. and Spranger, T, 1996, Manual on methodologies and criteria for mapping critical levels/loads and geographical area where they are exceeded Texte 71: 96. Berlin, Germany : Federal Environmental Agency; 144p.
  46. Yim, G. J., 2000, A study on weathering characteristics of granitic rocks, PhD thesis, Kangwon National University, 148p (in Korean with English abstract).

Cited by

  1. 암반 비탈면의 인장균열 위치 선정에 관한 사례 연구 vol.37, pp.3, 2017, https://doi.org/10.7843/kgs.2021.37.3.5