• Title/Summary/Keyword: Dirichlet boundary condition

Search Result 134, Processing Time 0.027 seconds

NUMBER OF THE NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2010
  • We investigate the number of the nontrivial solutions of the nonlinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the nonlinear biharmonic problem. We prove this result by the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.707-720
    • /
    • 2014
  • We get a theorem which shows the existence of at least three solutions for some elliptic system with Dirichlet boundary condition. We obtain this result by using the finite dimensional reduction method which reduces the infinite dimensional problem to the finite dimensional one. We also use the critical point theory on the reduced finite dimensioal subspace.

EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A CLASS OF NONLOCAL PROBLEMS WITH DIRICHLET BOUNDARY CONDITION

  • Chaharlang, Moloud Makvand;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.155-167
    • /
    • 2019
  • In this article we are concerned with some non-local problems of Kirchhoff type with Dirichlet boundary condition in Orlicz-Sobolev spaces. A result of the existence of infinitely many solutions is established using variational methods and Ricceri's critical points principle modified by Bonanno.

PENALIZED NAVIER-STOKES EQUATIONS WITH INHOMOGENEOUS BOUNDARY CONDITIONS

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • v.4 no.2
    • /
    • pp.179-193
    • /
    • 1996
  • This paper is concerned with the penalized stationary incompressible Navier-Stokes system with the inhomogeneous Dirichlet boundary condition on the part of the boundary. By taking a generalized velocity space on which the homogeneous essential boundary condition is imposed and corresponding trace space on the boundary, we pose the system to the weak form which the stress force is involved. We show the existence and convergence of the penalized system in the regular branch by extending the div-stability condition.

  • PDF

EXISTENCE OF THREE WEAK SOLUTIONS FOR A CLASS OF NONLINEAR OPERATORS INVOLVING p(x)-LAPLACIAN WITH MIXED BOUNDARY CONDITIONS

  • Aramaki, Junichi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.531-551
    • /
    • 2021
  • In this paper, we consider a mixed boundary value problem to a class of nonlinear operators containing p(x)-Laplacian. More precisely, we consider the problem with the Dirichlet condition on a part of the boundary and the Steklov boundary condition on an another part of the boundary. We show the existence of at least three weak solutions under some hypotheses on given functions and the values of parameters.

MULTIPLICITY RESULTS FOR SOME FOURTH ORDER ELLIPTIC EQUATIONS

  • Jin, Yinghua;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.489-496
    • /
    • 2010
  • In this paper we consider the Dirichlet problem for an fourth order elliptic equation on a open set in $R^N$. By using variational methods we obtain the multiplicity of nontrivial weak solutions for the fourth order elliptic equation.

ON SOME PROPERTIES OF BARRIERS AT INFINITY FOR SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

  • Cho, Sungwon
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • We consider the boundary value problem with a Dirichlet condition for a second order linear uniformly elliptic operator in a non-divergence form. We study some properties of a barrier at infinity which was introduced by Meyers and Serrin to investigate a solution in an exterior domains. Also, we construct a modified barrier for more general domain than an exterior domain.

EXISTENCE OF THE POSITIVE SOLUTION FOR THE NONLINEAR SYSTEM OF SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.339-345
    • /
    • 2008
  • We prove the existence of the positive solution for the nonlinear system of suspension bridge equations with Dirichlet boundary condition and periodic condition $$\{u_{tt}+u_{xxxx}+av^+=1+{\epsilon}_1h_1(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\v_{tt}+v_{xxxx}+bu^+=1+{\epsilon}_2h_2(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small numbers and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel}h_1{\parallel}={\parallel}h_2{\parallel}=1$.

  • PDF

Prediction of Sound Field Inside Duct with Moving Medium by using one Dimensional Green's function (평균 유동을 고려한 1차원 그린 함수를 이용한 덕트 내부의 음장 예측 방법)

  • Jeon, Jong-Hoon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.915-918
    • /
    • 2005
  • Acoustic holography uses Kirchhoff·Helmholtz integral equation and Green's function which satisfies Dirichlet boundary condition Applications of acoustic holography have been taken to the sound field neglecting the effect of flow. The uniform flow, however, changes sound field and the governing equation, Green's function and so on. Thus the conventional method of acoustic holography should be changed. In this research, one possibility to apply acoustic holography to the sound field with uniform flow is introduced through checking for the plane wave in a duct. Change of Green's function due to uniform flow and one method to derive modified form of Kirchhoff·Heimholtz integral is suggested for 1-dimensional sound field. Derivation results show that using Green's function satisfying Dirichlet boundary condition, we can predict sound pressure in a duct using boundary value.

  • PDF