• Title/Summary/Keyword: Directional data

Search Result 672, Processing Time 0.029 seconds

Identification of the Structural Damages in a Cylindrical Shell (원통형 셸에 발생한 구조손상의 규명)

  • Kim, Sung-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1586-1596
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the equations of motion of a damaged shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM may require only the FRF-data measured at damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

On Statistical Properties of the Extreme Waves in Hong-do Sea Area During Typhoons (홍도 해역에서 태풍 중 극한파의 통계적 특성에 대한 연구)

  • Ryu Hwanajin;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

Bearing Estimation of Narrow Band Acoustic Signals Using Cardioid Beamforming Algorithm in Shallow Water

  • Chang, Duk-Hong;Park, Hong-Bae;Na, Young-Nam;Ryu, Jon-Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.71-80
    • /
    • 2002
  • This paper suggests the Cardioid beamforming algorithm of the doublet sensors employing DIFAR (directional frequency analysis and recording) sensor signals in the frequency domain. The algorithm enables target bearing estimation using the signals from directional sensors. The algorithm verifies its applicability by successfully estimating bearings of a target projecting ten narrow-band signals in shallow water. The estimated bearings agree very well with those from GPS (global positioning system) data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1°∼ 6.7°and 13.3∼43.6°, respectively. Estimation errors are caused by SNR (signal to noise ratio) degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools

  • Eswaran, M.;Reddy, G.R.;Singh, R.K.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.779-799
    • /
    • 2015
  • The slosh height and the possibility of water spill from rectangular Spent Fuel Storage Bays (SFSB) and Tray Loading Bays (TLB) of Nuclear power plant (NPP) are studied during 0.2 g, Safe Shutdown Earthquake (SSE) level of earthquake. The slosh height obtained through Computational Fluid dynamics (CFD) is compared the values given by TID-7024 (Housner 1963) and American concrete institute (ACI) seismic codes. An equivalent amplitude method is used to compute the slosh height through CFD. Numerically computed slosh height for first mode of vibration is found to be in agreement the codal values. The combined effect in longitudinal and lateral directions are studied separately, and found that the slosh height is increased by 24.3% and 38.9% along length and width directions respectively. There is no liquid spillage under SSE level of earthquake data in SFSB and TLB at convective level and at free surface acceleration data. Since seismic design codes do not have guidelines for combined excitations and effect of higher modes for irregular geometries, this CFD procedure can be opted for any geometries to study effect of higher modes and combined three directional excitations.

The Bearing Estimation of Narrowband Acoustic Signals Using DIFAR Beamforming Algorithm (DIFAR 빔형성 알고리듬을 이용한 협대역 음향신호의 방향성 추정)

  • 장덕홍;박홍배;정문섭;김인수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.169-184
    • /
    • 2002
  • In order to extract bearing information from the directional sensors of DIFAR(directional frequency analysis and recording) that is a kind of passive sonobuoy, the cardioid beamforming algorithm applicable to DIFAR system was studied in the frequency domain. the algorithm uses narrow-band signals propagated though the media from the acoustic sources such as ship machineries. The proposed algorithm is expected to give signal to noise ratio of 6dB when it uses the maximum response axis(MRA) among the Cardioid beams. The estimated bearings agree very well with those from GPS data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1~$6.7^{\circ}$ and 13.3~$43.6^{\circ}$, respectively. Estimation errors are caused by SMR degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

A Study on Modified Mean Filter (변형된 평균 필터에 관한 연구)

  • 문홍득;배상범;김남호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.78-81
    • /
    • 2004
  • As a society has Progressed rapidly toward a highly advanced digital information age, a multimedia communication service for acquisition, transmission and storage of image data as well as voice has being commercialized externally and internally. However, in the process of digitalization or transmission of data, noise is generated by several causes, and researches for eliminating those noises have been continued until now. The mean filter is useful method to remove AWGN (additive white gaussian noise) from degraded image and has excellent low-frequency properties. However, it brings about degradation of high-frequency properties in image. So in this paper we removed noise with mean filters added directional information and minimized degradation of high-frequency properties.

  • PDF

MRSPAKE : A Web-Scale Spatial Knowledge Extractor Using Hadoop MapReduce (MRSPAKE : Hadoop MapReduce를 이용한 웹 규모의 공간 지식 추출기)

  • Lee, Seok-Jun;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.569-584
    • /
    • 2016
  • In this paper, we present a spatial knowledge extractor implemented in Hadoop MapReduce parallel, distributed computing environment. From a large spatial dataset, this knowledge extractor automatically derives a qualitative spatial knowledge base, which consists of both topological and directional relations on pairs of two spatial objects. By using R-tree index and range queries over a distributed spatial data file on HDFS, the MapReduce-enabled spatial knowledge extractor, MRSPAKE, can produce a web-scale spatial knowledge base in highly efficient way. In experiments with the well-known open spatial dataset, Open Street Map (OSM), the proposed web-scale spatial knowledge extractor, MRSPAKE, showed high performance and scalability.

A DAMAGE IDENTIFICATION METHOD FOR THIN CYLINDRICAL SHELLS (얇은 원통형 쉘에 발생한 손상 규명)

  • Oh H.;Cho J.;Lee U.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.394-399
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion fur a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the dynamic equations of the damaged cylindrical shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations fer damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

  • PDF

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.