Acknowledgement
The paper is supported by National Natural Science Foundation of China (52378298), and Natural Science Fund for Distinguished Young Scholars of Anhui Province (2208085J20).
References
- ANSYS (2014), ANSYS Multiphysics, Release 14.5, ANSYS Inc.; Canonsburg, PA, USA.
- Avsar, O., Akca, M.D. and Altan, M.O. (2014), "Photogrammetric deformation monitoring of the second Bosphorus Bridge in Istanbul", Int. Soc. Photogram. Remote Sensing, XL-5, 23-25. https://dx.doi.org/10.5194/isprsarchives-XL-5-71-2014
- Beshr, E.W. and Kaloop, M.R. (2013), "Monitoring bridge deformation using auto-correlation adjustment technique for total station observations", Positioning., 4, 1-7. https:// doi.org/10.4236/pos.2013.41001
- Chen, S.R. and Wu, J. (2011), "Modeling stochastic live load for long-span bridge based on microscopic traffic flow simulation", Comput. Struct., 89(9-10), 813-824. https://doi.org/10.1016/j.compstruc.2010.12.017
- Fan, G., Li, J. and Hao, H. (2019), "Lost data recovery for structural health monitoring based on convolution neural networks", Struct. Control. Hlth., 26(10), e2433. https://doi.org/10.1002/stc.2433
- Fan, G., Li, J. and Hao, H. (2020), "Vibration signal denoising for structural health monitoring by residual convolution neural networks", Measurement, 157, 107651. https://doi.org/10.1016/j.measurement.2020.107651
- Fan, G., Li, J., Hao, H. and Xin, Y. (2021), "Data driven structural dynamic response reconstruction using segment based generative adversarial networks", Eng. Struct., 234, 111970. https://doi.org/10.1016/j.engstruct.2021.111970
- Gaxiola-Camacho, J.R., Bennett, R., Guzman-Acevedo, G.M. and Gaxiola-Camacho, I.E. (2017), "Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology", Measurement, 110, 146-153. https://doi.org/10.1016/j.measurement.2017.06.026
- He, W.Y., Liu, P., Cheng, H.C., Li, Z.B. and Bu, J.Q. (2022), "Displacement reconstruction of beams subjected to moving load using data fusion of acceleration and strain response", Eng. Struct., 268, 114693. https://doi.org/10.1016/j.engstruct.2022.114693
- Huang, Q., Crosetto, M., Monserrat, O. and Crippa, B. (2017), "Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data", ISPRS. J. Photogramm., 68(1), 138-149. https://doi.org/10.1016/j.isprsjprs.2017.03.016
- Huang, Y., Wang, Y., Fu, J., Liu, A. and Gao, W. (2018), "Measurement of the real-time deflection of cable-stayed bridge based on cable tension variations", Measurement, 119, 218-228. https://doi.org/10.1016/j.measurement.2018.01.070
- Irving, H.M. (1981), Cable Structures, MIT press, Cambridge, MA, USA.
- Khuc, T. and Catbas, F.N. (2017), "Completely contactless structural health monitoring of real-life structures using cameras and computer vision", Struct. Control. Hlth., 24(1), e1852. https://doi.org/10.1002/stc.1852
- Kingma, D.P. and Ba, J. (2021), "Adam: A method for stochastic optimization", arXiv preprint, 1412, 6980. https://doi.org/10.48550/arXiv.1412.6980
- Lee, D.H. and Koh, B.H. (2021), "An image-based deep learning network technique for structural health monitoring", Smart Struct. Syst., Int. J., 28(6), 799-810. https://dx.doi.org/10.12989/sss.2021.28.6.799
- Li, S., Wang, X., Liu, H., Zhuo, Y., Su, W. and Di, H. (2020), "Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement", Smart Struct. Syst., Int. J., 26(5), 591-603. https://dx.doi.org/10.12989/sss.2020.26.5.591
- Ma, T.W., Bell, M., Xu, N.S. and Lu, W. (2014), "Recovering structural displacements and velocities from acceleration measurements", Smart Struct. Syst., Int. J., 14(2), 191-207. https://dx.doi.org/10.12989/sss.2014.14.2.191
- Nguyen, V.H., Schommer, S., Maas, S. and Zurbes, A. (2016), "Static load testing with temperature compensation for structural health monitoring of bridges", Eng. Struct., 127, 700-718. https:// doi.org/10.1016/j.engstruct.2016.09.018
- Ni, F.T., Zhang, J. and Chen, Z.Q. (2019), "Pixel-level crack delineation in images with convolutional feature fusion", Struct. Control. Hlth., 26(1), e2286. https://doi.org/10.1002/stc.2286
- Ni, F.T., Zhang, J. and Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Comput-Aided. Civil Inf., 35(7), 685-700. https://doi.org/10.1111/mice.12528
- Park, K.T., Kim, S.H., Park, H.S. and Lee, K.W. (2005), "The determination of bridge displacement using measured acceleration", Eng. Struct., 27(3), 371-378. https://doi.org/10.1016/j.engstruct.2004.10.013
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A. (2019), "Pytorch: An imperative style, high-performance deep learning library", arXiv preprint, 1912, 01713. https://doi.org/10.48550/arXiv.1412.6980
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite beams", Struct. Eng. Mech., Int. J., 20(2), 219-229. https://dx.doi.org/10.12989/sem.2010.36.2.165
- Shin, J.U., Jeon, H., Choi, S., Kim, Y. and Myung, H. (2016), "Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring", Smart Struct. Syst., Int. J., 18(4), 801-818. https://dx.doi.org/10.12989/sss.2014.14.2.191
- Stiros, S.C. (2021), "GNSS (GPS) Monitoring of dynamic deflections of bridges: Structural constraints and metrological limitations", Infrastructures, 6(2), 23. https://doi.org/10.3390/infrastructures6020023
- Tadesse, Z., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2012), "Neural networks for prediction of deflection in composite bridges", J. Constr. Steel Res., 68(1), 138-149. https://doi.org/10.1016/j.jcsr.2011.08.003
- Tian, Y., Xu, Y., Zhang, D. and Li, H. (2021), "Relationship modeling between vehicle-induced girder vertical deflection and cable tension by BiLSTM using field monitoring data of a cable-stayed bridge", Struct. Control. Hlth., 28(2), e2667. https://doi.org/10.1002/stc.2667
- Wang, X., Li, Z., Zhuo, Y., Di, H., Wei, J., Li, Y. and Li, S. (2021), "Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects", Smart Struct. Syst., Int. J., 28(6), 827-838. https://dx.doi.org/10.12989/sss.2021.28.6.827.
- Xu, Y., Brownjohn, J. and Kong, D. (2018), "A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge", Struct. Control. Hlth., 25(5), e2155. https://doi.org/10.1002/stc.2155
- Yi, T.H., Ye, X.W., Li, H.N. and Guo, Q. (2017), "Outlier detection of GPS monitoring data using relational analysis and negative selection algorithm", Smart Struct. Syst., Int. J., 20(2), 219-229. https://dx.doi.org/10.12989/sss.2017.20.2.219
- Yu, S., Xu, Z., Su, Z. and Zhang, J. (2021), "Two flexible vision-based methods for remote deflection monitoring of a long-span bridge", Measurement., 181, 109658. https://doi.org/10.1016/j.measurement.2021.109658
- Zhou, J., Sun, Z., Wei, B., Zhang, L. and Zeng, P. (2021), "Deflection-based multilevel structural condition assessment of long-span prestressed concrete girder bridges using a connected pipe system", Measurement, 169, 108352. https://doi.org/10.1016/j.measurement.2020.108352
- Zhuge, S., Xu, X., Zhong, L., Gan, S., Lin, B., Yang, X. and Zhang, X. (2022), "Noncontact deflection measurement for bridge through a multi-UAVs system", Comput-Aided. Civil Inf., 37(6), 746-761. https://doi.org/10.1111/mice.12771