DOI QR코드

DOI QR Code

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li (Department of Civil Engineering, Hefei University of Technology) ;
  • Wen-Yu He (Department of Civil Engineering, Hefei University of Technology) ;
  • Wei-Xin Ren (College of Civil and Transportation Engineering, Shenzhen University) ;
  • Gang Liu (China Design Group) ;
  • Hai-Peng Sun (China Design Group)
  • Received : 2022.06.03
  • Accepted : 2023.10.20
  • Published : 2023.11.25

Abstract

Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

Keywords

Acknowledgement

The paper is supported by National Natural Science Foundation of China (52378298), and Natural Science Fund for Distinguished Young Scholars of Anhui Province (2208085J20).

References

  1. ANSYS (2014), ANSYS Multiphysics, Release 14.5, ANSYS Inc.; Canonsburg, PA, USA.
  2. Avsar, O., Akca, M.D. and Altan, M.O. (2014), "Photogrammetric deformation monitoring of the second Bosphorus Bridge in Istanbul", Int. Soc. Photogram. Remote Sensing, XL-5, 23-25. https://dx.doi.org/10.5194/isprsarchives-XL-5-71-2014
  3. Beshr, E.W. and Kaloop, M.R. (2013), "Monitoring bridge deformation using auto-correlation adjustment technique for total station observations", Positioning., 4, 1-7. https:// doi.org/10.4236/pos.2013.41001
  4. Chen, S.R. and Wu, J. (2011), "Modeling stochastic live load for long-span bridge based on microscopic traffic flow simulation", Comput. Struct., 89(9-10), 813-824. https://doi.org/10.1016/j.compstruc.2010.12.017
  5. Fan, G., Li, J. and Hao, H. (2019), "Lost data recovery for structural health monitoring based on convolution neural networks", Struct. Control. Hlth., 26(10), e2433. https://doi.org/10.1002/stc.2433
  6. Fan, G., Li, J. and Hao, H. (2020), "Vibration signal denoising for structural health monitoring by residual convolution neural networks", Measurement, 157, 107651. https://doi.org/10.1016/j.measurement.2020.107651
  7. Fan, G., Li, J., Hao, H. and Xin, Y. (2021), "Data driven structural dynamic response reconstruction using segment based generative adversarial networks", Eng. Struct., 234, 111970. https://doi.org/10.1016/j.engstruct.2021.111970
  8. Gaxiola-Camacho, J.R., Bennett, R., Guzman-Acevedo, G.M. and Gaxiola-Camacho, I.E. (2017), "Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology", Measurement, 110, 146-153. https://doi.org/10.1016/j.measurement.2017.06.026
  9. He, W.Y., Liu, P., Cheng, H.C., Li, Z.B. and Bu, J.Q. (2022), "Displacement reconstruction of beams subjected to moving load using data fusion of acceleration and strain response", Eng. Struct., 268, 114693. https://doi.org/10.1016/j.engstruct.2022.114693
  10. Huang, Q., Crosetto, M., Monserrat, O. and Crippa, B. (2017), "Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data", ISPRS. J. Photogramm., 68(1), 138-149. https://doi.org/10.1016/j.isprsjprs.2017.03.016
  11. Huang, Y., Wang, Y., Fu, J., Liu, A. and Gao, W. (2018), "Measurement of the real-time deflection of cable-stayed bridge based on cable tension variations", Measurement, 119, 218-228. https://doi.org/10.1016/j.measurement.2018.01.070
  12. Irving, H.M. (1981), Cable Structures, MIT press, Cambridge, MA, USA.
  13. Khuc, T. and Catbas, F.N. (2017), "Completely contactless structural health monitoring of real-life structures using cameras and computer vision", Struct. Control. Hlth., 24(1), e1852. https://doi.org/10.1002/stc.1852
  14. Kingma, D.P. and Ba, J. (2021), "Adam: A method for stochastic optimization", arXiv preprint, 1412, 6980. https://doi.org/10.48550/arXiv.1412.6980
  15. Lee, D.H. and Koh, B.H. (2021), "An image-based deep learning network technique for structural health monitoring", Smart Struct. Syst., Int. J., 28(6), 799-810. https://dx.doi.org/10.12989/sss.2021.28.6.799
  16. Li, S., Wang, X., Liu, H., Zhuo, Y., Su, W. and Di, H. (2020), "Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement", Smart Struct. Syst., Int. J., 26(5), 591-603. https://dx.doi.org/10.12989/sss.2020.26.5.591
  17. Ma, T.W., Bell, M., Xu, N.S. and Lu, W. (2014), "Recovering structural displacements and velocities from acceleration measurements", Smart Struct. Syst., Int. J., 14(2), 191-207. https://dx.doi.org/10.12989/sss.2014.14.2.191
  18. Nguyen, V.H., Schommer, S., Maas, S. and Zurbes, A. (2016), "Static load testing with temperature compensation for structural health monitoring of bridges", Eng. Struct., 127, 700-718. https:// doi.org/10.1016/j.engstruct.2016.09.018
  19. Ni, F.T., Zhang, J. and Chen, Z.Q. (2019), "Pixel-level crack delineation in images with convolutional feature fusion", Struct. Control. Hlth., 26(1), e2286. https://doi.org/10.1002/stc.2286
  20. Ni, F.T., Zhang, J. and Noori, M.N. (2020), "Deep learning for data anomaly detection and data compression of a long-span suspension bridge", Comput-Aided. Civil Inf., 35(7), 685-700. https://doi.org/10.1111/mice.12528
  21. Park, K.T., Kim, S.H., Park, H.S. and Lee, K.W. (2005), "The determination of bridge displacement using measured acceleration", Eng. Struct., 27(3), 371-378. https://doi.org/10.1016/j.engstruct.2004.10.013
  22. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A. (2019), "Pytorch: An imperative style, high-performance deep learning library", arXiv preprint, 1912, 01713. https://doi.org/10.48550/arXiv.1412.6980
  23. Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite beams", Struct. Eng. Mech., Int. J., 20(2), 219-229. https://dx.doi.org/10.12989/sem.2010.36.2.165
  24. Shin, J.U., Jeon, H., Choi, S., Kim, Y. and Myung, H. (2016), "Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring", Smart Struct. Syst., Int. J., 18(4), 801-818. https://dx.doi.org/10.12989/sss.2014.14.2.191
  25. Stiros, S.C. (2021), "GNSS (GPS) Monitoring of dynamic deflections of bridges: Structural constraints and metrological limitations", Infrastructures, 6(2), 23. https://doi.org/10.3390/infrastructures6020023
  26. Tadesse, Z., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2012), "Neural networks for prediction of deflection in composite bridges", J. Constr. Steel Res., 68(1), 138-149. https://doi.org/10.1016/j.jcsr.2011.08.003
  27. Tian, Y., Xu, Y., Zhang, D. and Li, H. (2021), "Relationship modeling between vehicle-induced girder vertical deflection and cable tension by BiLSTM using field monitoring data of a cable-stayed bridge", Struct. Control. Hlth., 28(2), e2667. https://doi.org/10.1002/stc.2667
  28. Wang, X., Li, Z., Zhuo, Y., Di, H., Wei, J., Li, Y. and Li, S. (2021), "Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects", Smart Struct. Syst., Int. J., 28(6), 827-838. https://dx.doi.org/10.12989/sss.2021.28.6.827.
  29. Xu, Y., Brownjohn, J. and Kong, D. (2018), "A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge", Struct. Control. Hlth., 25(5), e2155. https://doi.org/10.1002/stc.2155
  30. Yi, T.H., Ye, X.W., Li, H.N. and Guo, Q. (2017), "Outlier detection of GPS monitoring data using relational analysis and negative selection algorithm", Smart Struct. Syst., Int. J., 20(2), 219-229. https://dx.doi.org/10.12989/sss.2017.20.2.219
  31. Yu, S., Xu, Z., Su, Z. and Zhang, J. (2021), "Two flexible vision-based methods for remote deflection monitoring of a long-span bridge", Measurement., 181, 109658. https://doi.org/10.1016/j.measurement.2021.109658
  32. Zhou, J., Sun, Z., Wei, B., Zhang, L. and Zeng, P. (2021), "Deflection-based multilevel structural condition assessment of long-span prestressed concrete girder bridges using a connected pipe system", Measurement, 169, 108352. https://doi.org/10.1016/j.measurement.2020.108352
  33. Zhuge, S., Xu, X., Zhong, L., Gan, S., Lin, B., Yang, X. and Zhang, X. (2022), "Noncontact deflection measurement for bridge through a multi-UAVs system", Comput-Aided. Civil Inf., 37(6), 746-761. https://doi.org/10.1111/mice.12771