• Title/Summary/Keyword: Direct-numerical simulation

Search Result 455, Processing Time 0.024 seconds

Dynamic characteristics analysis of forcing jet by Karhunen-Loeve transformation (Karhunen-Loeve 변환을 이용한 Forcing 제트의 동적 특성 해석)

  • Lee, Chan-Hui;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.758-772
    • /
    • 1997
  • The snapshot method is introduced to approximate the coherent structures of planar forcing jet flow. The numerical simulation of flow field is simulated by discrete vortex method. With snapshot method we could treat the data efficiently and approximate coherent structures inhered in the planer jet flow. By forcing the jet at a sufficient amplitude and at a well-chosen frequency, the paring can be controlled in the region of the jet. Finally we expressed the underlying coherent structures of planar jet flow in the minimum number of modes by Karhunen-Loeve transformation in order to understand jet flow and to make the information storage and management in computers easier.

Reactants Transport Mechanism in Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 반응물 전달기구)

  • Oh, Chang-Bo;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1690-1696
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry are adopted in this calculation. The results show that an initially flat stagnation plane, where an axial velocity is zero, is deformed into a complex-shaped plane, and an initial stagnation point is moved far away from vortex head when the counterflow field is perturbed by the vortex. It is noted that the movement of stagnation point can alter the mechanism of reactants (fuel and oxidizer) fluxes into the flame surface, and then can alter the flame structure.

  • PDF

Characteristics of Accelerations in Turbulent Channel Flow (난류 채널 유동에서의 가속도 특성)

  • Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1801-1805
    • /
    • 2003
  • The intermittent characteristics of fluid particle accelerations near the wall are investigated with the higher-order statistics and the probability density functions (PDF) by using a direct numerical simulation of turbulent channel flow. Also, the behaviors of acceleration associated with the coherent structures are discussed. The flatness factor of wall-normal acceleration is extremely high near the wall and it exceeds the previously reported value obtained in isotropic turbulence. The presence of the wall seems to make the accelerations more intermittent and the associated mechanism is explained with the PDFs. The skewness factor of wall-normal acceleration indicates that accelerations are associated with the streamwise vortices.

  • PDF

Maximum drag reduction in turbulent channel flow by polymer additives (난류 채널 유동에서 폴리머 첨가제에 의한 최대 항력감소)

  • Min Taegee;Choi Haecheon;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.475-478
    • /
    • 2002
  • Maximum drag reduction (MDR) in turbulent channel flow by polymer additives is studied by direct numerical simulation. An Oldroyd-B model is adopted to express the polymer stress because it is believed that MDR is closely related to the elasticity of the polymeric liquids. The Reynolds number based on the bulk velocity and the channel height is 40000. MDR in the present study is $44{\%}$ and this is in a good agreement with the Virk's asymptote. Turbulence statistics are also in good agreements with the experimental observation. In the 'large drag reduction', the decrease of turbulent kinetic energy is compensated by the increase of energy transfer from the polymer to the flow. Therefore, MDR is a dynamic equilibrium state of the energy transfer between the polymer and the flow.

  • PDF

SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계)

  • Park, Hyung-Moo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.

Lagrangian Investigation of Turbulent Channel Flow (I) - An Assessment of Particle Tracking Algorithms - (난류채널유동의 라그란지안 해석 (I)- 입자추적 알고리듬 평가 -)

  • Choi, Jung-Il;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.859-866
    • /
    • 2003
  • The Lagrangian dispserion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Fluid particle velocity and acceleration along a particle trajectory are computed by employing several interpolation schemes such as linear interpolation, high-order Lagrange polynomial interpolation and the Hermite interpolation schemes. The performances of the schemes are evaluated through comparison of errors in computed particle positions, velocities and accelerations against spectral interpolation. Adopting the four-point Hermite interpolation in the homogeneous directions and Chebyshev polynomials in the wall-normal direction appears to produce most reliable Lagrangian statistics including acceleration correlations with a reasonable amount of computational overhead.

Lagrangian Investigation of Turbulent Channel Flow (II) - Analysis of Lagrangian Statistics - (난류채널유동의 라그란지안 해석 (II) - 라그란지안 통계분석 -)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.867-876
    • /
    • 2003
  • The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted to simulate the fluid particle dispersion. An inhomogeneity of Lagrangian statistics in turbulent boundary layer is investigated by releasing many particles at several different wall-normal locations and tracking those particles. The fluid particle dispersions and Lagrangian structure functions of velocity are scaled by the Kolmogorov similarity. The auto-correlations of velocity and acceleration are shown at the different releasing locations. Effect of initial particle location on the dispersion is analyzed by the probability density function at the several downstreams and time instants.

Adaptive fuzzy sliding mode control of seismically excited structures

  • Ghaffarzadeh, Hosein;Aghabalaei, Keyvan
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.577-585
    • /
    • 2017
  • In this paper, an adaptive fuzzy sliding mode controller (AFSMC) is designed to reduce dynamic responses of seismically excited structures. In the conventional sliding mode control (SMC), direct implementation of switching-type control law leads to chattering phenomenon which may excite unmodeled high frequency dynamics and may cause vibration in control force. Attenuation of chattering and its harmful effects are done by using fuzzy controller to approximate discontinuous part of the sliding mode control law. In order to prevent time-consuming obtaining of membership functions and reduce complexity of the fuzzy rule bases, adaptive law based on Lyapunov function is designed. To demonstrate the performance of AFSMC method and to compare with that of SMC and fuzzy control, a linear three-story scaled building is investigated for numerical simulation based on the proposed method. The results indicate satisfactory performance of the proposed method superior to those of SMC and fuzzy control.

A Numerical Analysis of Rarefied Flow of Cylinder Using FDDO (FDDO를 이용한 실린더를 지나는 희박기체의 해석)

  • Ahn M. Y.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.138-144
    • /
    • 1998
  • The BGK equation, which is the kinetic model equation of Boltzmann equation, is solved using FDDO(finite difference with the discrete-ordinate method) to compute the rarefied flow of monatomic gas. Using reduced velocity distribution and discrete ordinate method, the scalar equation is transformed into a system of hyperbolic equations. High resolution ENO(Essentially Non-Oscillatory) scheme based on Harten-Yee's MFA(Modified Flux Approach) method with Strang-type explicit time integration is applied to solve the system equations. The calculated results are well compared with the experimental density field of NACA0012 airfoil, validating the developed computer code. Next. the computed results of circular cylinder flow for various Knudsen numbers are compared with the DSMC(Direct Simulation Monte Carlo) results by Vogenitz et al. The present scheme is found to be useful and efficient far the analysis of two-dimensional rarefied gas flows, especially in the transitional flow regime, when compared with the DSMC method.

  • PDF

A Reynolds Stress Model for Low-Reynolds-Number Turbulence (저레이놀즈수 난류에 대한 레이놀즈 응력모델)

  • 김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1541-1546
    • /
    • 1993
  • To extend the widely used Gibson and Launder's second order closure model to the low-Reynolds-number region near a wall, modifications have been made for velocity pressure-gradient interaction and dissipation terms in the stress equations, and also for the dissipation rate equation. From the computation of fully developed plane channel flow, it is found that the results with present model agree well with the data of direct numerical simulation in the predictions of stress components. And, the computed mean velocity profile coincides with the universal velocity law.