• Title/Summary/Keyword: Direct reaction

Search Result 1,057, Processing Time 0.025 seconds

Growth of GaN by Reaction of Ga and NH$_3$ (Ga과 NH$_3$의 직접반응에 의한 GaN의 성장)

  • 이영주;김진용;권영란;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.180-182
    • /
    • 1997
  • GaN crystals were deposited by tile direct reaction between ammonia and gallium at 105$0^{\circ}C$, 107$0^{\circ}C$ and 110$0^{\circ}C$ on (0001) plane sapphire substrate. The size of GaN crystals were increased with reaction temperature, but its were decreased with increasing the flow rates of NH$_3$. The size of GaN of 46${\mu}{\textrm}{m}$ were deposited ell sapphire substrate at the reaction temperature of 107$0^{\circ}C$ for growth time of 60 min.

  • PDF

Synthesis of GaN micro-scale powder and its characteristics (GaN 미세 분말의 합성과 특성)

  • 조성룡;여용운;이종원;박인용;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.554-557
    • /
    • 2001
  • In this work, we had synthesis the GaN powder by direct reaction between Ga and NH$_3$at the temperature range of 1000∼1150$^{\circ}C$, and investigated the reaction condition dependence of the GaN yield and some properties of GaN powder. The synthesized powder had Platelet and prismatic shape and showed hexagonal crystalline structure with the lattice constants of a= 3.1895 ${\AA}$, c= 5.18394 ${\AA}$, and the ratio of c/a = 1.6253. The GaN powder synthesis processes were examined based on the oxidation process of mater, and found as combined with mass transport process for the initial stage and diffusion-limited reaction for the extended reaction.

  • PDF

Inhibitory Effects of Medicinal Plants on Anaphylactic Reaction (생약의 아나필락시 반응의 억제 효과)

  • Lee, Jae-Kwan;Yum, Jung-Yul;Kim, Youn-Chul;Shin, Tae-Yong
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.489-493
    • /
    • 2000
  • Mortality test has been utilized as a basic method for systemic anaphylactic reaction. Compound 48/80 has been used as a direct and convenient reagent to study the mechanism of anaphylacic reaction. The aqueous extracts of 102 medicinal plants were screened for mortality test using compound 48/80. Sixteen out of the 102 medicinal plants exhibited more than 50% of inhibition on mortality test by their total aqueous extracts with 0.1 mg/g as a final concentration.

  • PDF

Conversion of Potassium Chloride to Potassium Nitrate by the Reaction of Nitrogen Dioxide (Potassium Chloride로부터 Nitrogen Dioxide 반응에 의한 Potassium Nitrate로의 전환)

  • Yim, Going
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.129-136
    • /
    • 1996
  • The direct conversion of solid potassium chloride to solid potassium nitrate by the reaction of the chloride with gaseous nitrogen dioxide is suggested for the preparation of potassium nitrate. Thermodynamic calculations indicate that the free energy change is favorable at ordinary temperatures and that the reaction is exothermic. Experiments are described in which it was found that the reaction takes place at ordinary temperatures in the presence of a small amount of water with good yield. Nitrosyl chloride is produced simultaneously.

  • PDF

DABCO-Catalyzed Green Synthesis of 2-Hydroxy-1,4-diones via Direct Aldol Reaction of Arylglyoxals in Water

  • Saraei, Mahnaz;Eftekhari-Sis, Bagher;Mozaffarnia, Sakineh
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.252-259
    • /
    • 2013
  • A green and simple method to synthesize of 1,4-diketones via aldol reaction of arylglyoxals and ketones such as 1-(4-methoxyphenyl)-2-propanone, deoxybenzoin and substituted acetophenones in the presence of a catalytic amount of DABCO in water at room temperature has been reported. Corresponding 2-hydroxy-1,4-diones were obtained in moderate to high yields with simple separation of obtained solid from reaction mixture and recrystallization.

Theoretical Studies on Phentl Group Migration of Protonated 1,2-Diphenyl Hydrazines

  • Kim, Chan Gyeong;Lee, In Yeong;Kim, Jang Geun;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.477-482
    • /
    • 2000
  • Phenyl group migration within protonated 1,2-diphenyl hydrazines has been studied theoretically using the semi-empirical AM1 method. This reaction proceeds through a 3-membered cyclic transition state and requires high activation energy. In the reactant, there was no resonance stabilization for the moving Z-ring, however, hammett $p_Z^+$ values are large due to the direct involvement of the Z-ring inthe reaction, and the development of a negative charge on the reaction center gives them a posifive value. In the case of the non-moving ring, $p_Y^+$ values are small and negative owing to the smaller positive charge increase in the reaction center. The cross-interaction constant, $p_YZ^+$, was obtained from the activation enthalpies, using the multipe linear regression methdo, and the interaction between two substituents, Y and Z, is examined.

Direct Bonding of Cu/AlN using Cu-Cu2O Eutectic Liquid (Cu-Cu2O계 공융액상을 활용한 Cu/AlN 직접접합)

  • Hong, Junsung;Lee, Jung-Hoon;Oh, You-Na;Cho, Kwang-Jun;Riu, Doh-Hyung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of $2CuO{\rightarrow}Cu_2O$ + 1/2 $O_2$ by placing powder bed of CuO or $Cu_2O$ around the Cu/AlN bonding pair at $1065{\sim}1085^{\circ}C$. The adhesion strength was relatively better in case of using CuO powder than when $Cu_2O$ powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of $Cu_2O$, Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and $Cu_2O$.

Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system

  • Ryu, Kyoung-Seok;Choi, Yun-Seok;Ko, Jun-Sang;Kim, Seong-Ock;Kim, Hyun-Jung;Cheong, Hae-Kap;Jeon, Young-Ho;Choi, Byong-Seok;Cheong, Chae-Joon
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.852-857
    • /
    • 2008
  • Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

A Study on the Metal to Zirconia Joining by Applying Direct Current (직류전원부하에 의한 지르코니아와 금속의 접합)

  • Kim Sung Jin;Kim Moon Hyop;Park Sung Bum;Gwon Won Il
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.383-390
    • /
    • 2005
  • Effect of applying a DC voltage on the interfacial reaction at the metal to zirconia interface was investigated utilizing an oxygen ionic conductivity of partially stabilized zirconia. The joining of copper rod and zirconia tube was carried out in Ar gas atmosphere at $1000^{\circ}C$. There are two type of the joining. The one is the reaction bond consisting of copper and zirconia was dominated by surface reaction with a undetectable very thin layer. It was found that copper elements were diffused to zirconia side, but that Zr ions were not diffused to copper side. These results mean application of a DC voltage to migrate oxygen to the copper-zirconia interface can oxidize metal at the copper-zirconia interface and the bonding reaction between zirconia and copper oxide may occur. The other is the reaction bonding was dominated by interdiffusion with a very thick interface layer. This result mean application of a DC voltage can reduce zirconia at the interface. The bonding reaction is to be an alloying between Zr and Cu.

  • PDF