• Title/Summary/Keyword: Direct modulation

Search Result 374, Processing Time 0.025 seconds

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Grid Angle Optimization and Grid Artifact Reduction in Digital Radiography Images Based on the Modulation Model (디지털 방사선 영상에서 그리드 각도의 최적화와 변조 모델에 기초한 그리드 왜곡의 제거)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.30-41
    • /
    • 2011
  • In order to obtain more clear x-ray images, an antiscatter grid, which can absorb the scattered rays, is employed. In the high-resolution direct digital radiography, however, the artifacts due to the grid are visible. In this paper, within the methods of obtaining x-ray digital images by employing the rotated grids for the facility of grid artifact reduction, the previous work, where the frequencies of the artifact components on the boundary, is further analyzed and extended, and a min-max optimization for a given grid density is proposed. For practical grid densities, appropriate grid angles are provided and a grid artifact reduction algorithm is proposed for the appropriate grid angles. The proposed algorithm is tested for real x-ray digital images with a comparison, and can remove the grid artifacts while maintaining the resolution of the original image.

Performance Analysis of Uplink Cognitive Radio Transmission based on Overloaded MC-DS-CDMA

  • Sundararajan, Mohandass;Govindaswamy, Umamaheswari
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.181-190
    • /
    • 2014
  • This paper reports a cognitive radio network architecture based on overloaded multicarrier direct sequence code division multiple access (O-MC-DS-CDMA). The O-MC-DSCDMA technique combines CDMA with a multicarrier modulation technique to overcome the channel fading effects. In this technique, secondary users are enabled to share the available bandwidth with the existing primary users. Two sets of orthogonal Gold codes are used to support the primary and secondary users simultaneously. The orthogonality between the spreading codes is lost due to the non-zero cross correlation between the codes and the timing synchronization error in the uplink transmission, which causes interference between primary and secondary users. This paper proposes two modified hybrid parallel/successive interference cancellation techniques for primary and secondary user base station receivers with multiple antennas to suppress the interference among users. Interference among the same group of users is cancelled by parallel interference cancellation and the interference among groups is cancelled using successive interference cancellation. The simulation results confirmed that the proposed modified interference cancellation techniques show better BER performance over conventional interference cancellation techniques.

Design and performance of a CE-CPSK modulated digital delay locked tracking loop (CE-CPSK 변조된 디지털 지연동기루프의 설계 및 성능 분석)

  • 김성철;송인근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.417-426
    • /
    • 2000
  • In this paper, CE-CPSK(Constant Envelope Continuous Phase Shift Keying) modulated DS/SS(Direct Sequence Spread Spectrum) transceiver with 908 MHz carrier frequency and 1.5 MHz PN clock rate is proposed. To overcome the effect of nun-linear power amplifier, CE-CPSK modulation method which has the constant envelope and continuous phase characteristics is proposed. To analyze the DS/SS receiver performance with respect to code tracking loop, multipath fading channel is characterized as a two-ray Rayleigh fading channel. To compensate the demerit of analog delay locked loop, digital delay locked loop is employed for code tracking loop. Simulation and experimental examination has been carried out in AWGN(Additive White Gaussian Noise) and Rayleigh fading channel environment in order to prove validity of the proposed method.

  • PDF

Waveform Generator for W-band Compact Radar (W-band 소형 레이다용 파형발생부)

  • Lee, Man-Hee;An, Se-Hwan;Kim, Young-Gon;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • In this paper, W-band Waveform Generator for compact radar has been designed and fabricated. DDS (Direct Digital Synthesizer) is applied to generate CW (Continuous Wave) and FMCW (Frequency Modulation Continuous Wave) waveform at high speed. We designed two LO (Local Oscillator) paths for functions of distance delay and distance tracking tests at the prpposed system without extra test equipment. Two mode selections are provided by switch. It is observed that fabricated waveform generator performs -91 dBc/Hz phase noise at offset 1 kHz and -63.2 dBc spurious. Proposed W-band Waveform Generator is expected to apply for W-band compact radar transceiver module.

Novel Multiple Access Schemes for IEEE 802.15.4a Low-rate Ultra-wide Band Systems

  • Zhang, Hong;Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.682-687
    • /
    • 2010
  • The IEEE 802.15.4a specification targets the low-rate (LR) Impulse-radio (IR) ultra-wideband (UWB) system which is now widely applied in the WPANs considering rather short distance communications with low complexity and power consumption. The physical (PHY) layer uses concatenated coding with mixed binary phase-shift keying and binary pulse-position modulation (BPSK-BPPM), and direct sequence spreading with time hopping in order that both coherent and non-coherent receiver architectures are supported. In this paper, the performances of multiple access schemes compliant with IEEE 802.15.4a specification are investigated with energy detection receiver, which allow avoiding the complex channel estimation needed by a coherent receiver. However, the performance of energy detection receiver is severely degraded by multi-user interference (MUI), which largely diminishes one of the most fascinating advantages of UWB, namely robustness to MUI as well as the possibility to allow parallel transmissions. So as to improve the performance of multiple access schemes, we propose to apply the novel TH sequences as well as to increase the number of TH positions. The simulation results show that our novel multiple access schemes significantly improve the performance against MUI.

A Design of IQ Modulator for Direct Carrier Modulation Systems (직접 반송파 변조 시스템을 위한 IQ 변조기 설계)

  • Mun, Tae-Su;Kim, Phirun;Jeong, Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.847-851
    • /
    • 2011
  • In this paper, a novel IQ modulator that precisely controls the magnitude and phase of input signals is proposed. The proposed IQ modulator consists of low phase deviation attenuators, a splitter, and a combiner. In order to overcome the phase deviation characteristics found in conventional attenuators, a novel phase compensation technique has been adopted and mathematically analyzed. Linear vector arrays along the center point with large magnitude output signal variations in a full $360^{\circ}$ phase control are achieved on a polar plane by the proposed IQ modulator.

Admittance Model-Based Nanodynamic Control of Diamond Turnning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 극초정밀 제어)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.49-52
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining processprohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normalto the face of the workpice can be filterd through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment cotnrol action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. Based on the empirical data of the cutting dynamics, simulation results are shown.

  • PDF

Capacity of a DS-CDMA Satellite Communication System under a Multitone Jamming (톤 재밍환경에서 DS-CDMA방식 위성통신 링크의 용량분석)

  • Choi, Young-Kyun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.30-36
    • /
    • 1999
  • Jamming is an important factor in the military satellite communication system. In this paper, link capacity and jamming margin of the DS-CDMA(Direct Sequence-Code Division Multiple Access) military satellite communication system are analyzed and calculated under a multitone jamming. The analysis was performed with two types of transponders loaded on a geosynchronous satellite. Calculation methods for link capacity and jamming margin were obtained. The results of the analysis show that capacity of a transponder which does modulation/demodulation, decoding/encoding in addition to despreading/respeading is twice as much as that of a tranponder which does despreading /respreading only.

  • PDF

A Multi-Channel Correlative Vector Direction Finding System Using Active Dipole Antenna Array for Mobile Direction Finding Applications

  • Choi, Jun-Ho;Park, Cheol-Sun;Nah, Sun-Phil;Jang, Won
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.161-168
    • /
    • 2007
  • A fast correlative vector direction finding(CVDF) system using active dipole antenna array for mobile direction finding(DF) applications is presented. To develop the CVDF system, the main elements such as active dipole antenna, multi-channel direction finder, and search receiver are designed and analyzed. The active antenna is designed as composite structure to improve the filed strength sensitivity over the wide frequency range, and the multi-channel direction finder and search receiver are designed using DDS-based PLL with settling time of below 35 us to achieve short signal processing time. This system provides the capabilities of the high DF sensitivity over the wide frequency range and allows for high probability of intercept and accurate angle of arrival(AOA) estimation for agile signals. The design and performance analysis according to the external noise and modulation schemes of the CVDF system with five-element circular array are presented in detail.