• Title/Summary/Keyword: Direct in-situ analysis

Search Result 52, Processing Time 0.024 seconds

In-Situ Analysis of Overpotentials in Direct Methanol Fuel Cell by Using Membrane Electrode Assembly Composed of Three Electrodes (삼전극으로 구성된 막전극접합체를 이용한 직접메탄올 연료전지의 실시간 과전압 분석)

  • Jung, Namgee;Cho, Yoon-Hwan;Cho, Yong-Hun;Sung, Yung-Eun
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.330-336
    • /
    • 2018
  • In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su;Lee, Jonghee;Kim, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2635-2639
    • /
    • 2013
  • The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

Assessment of the Radiological Inventory for the Reactor at Kori NPP Using In-Situ Measurement Technology (In-Situ 측정법을 이용한 고리 원자로 방사선원항 평가)

  • Jeong, Hyun Chul;Jeong, Sung Yeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • After the expiration of operating license of a plant, all infrastructures within the plant must be safely dismantled to the point that it no longer requires measures for radiation protection. Despite the fact that Kori 1 and Wolsong 1 are close to the expiration of their operating license, sufficient technologies for radiological characterization, decontamination and dismantling is still under development. The purpose of this study is to develop one of methods for radiological inventory assessment on measuring object by using direct measure of large component with In-Situ measurement technique. Radiological inventory was assessed by analyzing nuclide using portable gamma spectroscopy without dismantling reactor head, and the result of direct measurement was supplemented by performing indirect measurement. Radiochemical analysis were performed on surface contamination samples as well. During the study, radiological inventory of reactor vessel calculated expanding the result. Based on the result and the radioactivity variation of each radionuclides time frame for decommissioning can be decided. Thus, it is expected that during the decommissioning of plants, the result of this study will contribute to the reduction of radiation exposure to workers.

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis (In Situ NMR 진단용 원통형 직접 메탄올 연료전지)

  • Joh, Han-Ik;Um, Myung-Sup;Han, Kee-Sung;Han, Oc-Hee;Ha, Heung-Yong;Kim, Soo-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.

A Study on the Shear Strength Characteristics of Composited Ground applying RAP Method by Large Direct Shear Test (대형직접전단시험에 의한 RAP 복합지반의 전단강도 특성 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Kim, Jong-San
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.82-89
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the shear strength characteristics according to the area replacement ratio of RAP and the relative density of in-situ ground was studied through soil laboratory tests and large direct shear tests in a model ground. As a result, the internal friction angle tends to increase in proportion to in-situ relative density(Very Loose, Loose, Medium) in composite ground formed by the same area replacement ratio of RAP and also increase in proportion to increasing the area replacement ratio(30, 40, 50%) of RAP in the same ground condition. Furthermore, the comparative analysis between the experimental value and theoretical value of the shear strength is carried out.

  • PDF

Estimation of Tension Forces of Assembly Stay Cables Connected with Massive Anchorage Block (중량 앵커리지 블록과 연결된 조립 스테이 케이블의 장력 추정)

  • Jeong, Woon;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.346-353
    • /
    • 2005
  • In this paper, the tension of assembly stay cable connected with massive anchorage block was calculated through back analysis of in-situ frequencies measured from a stadium structure. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method can search the optimal tension without regard to the initial ones and has a rapid convergence rate. To verify the reliability of back analysis, Tension formulas proposed by Zui et al. and Shimada were used. Tensions estimated by three methods are compared with the design tension, and are in a reasonable agreement with an error of more or less than 15%. Therefore, it is shown that back analysis applied in this paper is appropriate for estimation of cable tension force.

Estimation of Tension Forces of Assembly Stay Cables Connected with Massive Anchorage Block (중량 앵커리지 블록과 연결된 조립 스테이 케이블의 장력 추정)

  • Jeong, Woon;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.435-440
    • /
    • 2004
  • In this paper, the tension of assembly stay cable connected with massive anchorage block was calculated through back analysis of in-situ frequencies measured from a stadium structure. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method can search the optimal tension without regard to the initial ones and has a rapid convergence rate. To verify the reliability of back analysis, Tension formulas proposed by Zui et al. and Shimada were used. Tensions estimated by three methods are compared with the design tension, and are in a reasonable agreement with an error of more or less than 15%. Therefore, it is shown that back analysis applied in this paper is appropriate for estimation of cable tension force.

  • PDF

Production Biodiesel via In-situ Transesterification from Chlorella sp. using Microwave with Base Catalyst

  • Kalsum, Ummu;Kusuma, Heri Septya;Roesyadi, Achmad;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.773-778
    • /
    • 2018
  • In-situ transesterification of microalgae lipids using microwave irradiation has potential to simplify and accelerate biodiesel production, as it minimizes production cost and reaction time by direct transesterification of microalgae into biodiesel with microwave as a heating source. This study was conducted to research the effect of microwave irradiation with in-situ transesterification of microalgae under base catalyst condition. The process variables (reaction time, solvent ratio, microwave power) were studied using 2% of catalyst concentration. The maximum yield of FAME was obtained at about 32.18% at the reaction time of 30 min with biomass-methanol ratio 1:12 (w/v) and microwave power of 450 W. The GC MS analysis obtained that the main component of FAME from microalgal oils (or lipids) was palmitic acid, stearic acid and oleic acid. The results show that microwaves can be used as a heating source to synthesize biodiesel from microalgae in terms of major components resulting.

Analysis of Semi-Infinite Problems Subjected to Body Forces Using Nonlinear Finite Elements and Boundary Elements (물체력이 작용되는 반무한영역문제의 비선형유한요소-경계요소 조합해석)

  • Hwang, Hak Joo;Kim, Moon Kyum;Huh, Taik Nyung;Ra, Kyeong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The underground structure, which has infinite or semi-infinite boundary conditions, is subjected by body forces and in-situ stresses. It also has stress concentration, which causes material nonlinear behavior, in the vicinity of the excavated surface. In this paper, some methods which can be used to transform domain integrals into boundary integrals are reviewed in order to analyze the effect of the body forces and the in-situ stresses. First, the domain integral of the body force is transformed into boundary integral by using the Galerkin tensor and divergence theorem. Second, it is transformed by writing the domain integral in cylindrical coordinates and using direct integration. The domain integral of the in-situ stress is transformed into boundary integral applying the direct integral method in cylindrical coordinates. The methodology is verified by comparing the results from the boundary element analysis with those of the finite element analysis. Coupling the above boundary elements with finite elements, the nonlinear behavior that occurs locally in the vicinity of the excavation is analyzed and the results are verified. Thus, it is concluded that the domain integrals of body forces and in-situ stresses could be performed effectively by transforming them into the boundary integrals, and the nonlinear behavior can be reasonably analyzed by coupled nonlinear finite element and boundary element method. The result of this research is expected to he used for the analysis of the underground structures in the effective manner.

  • PDF

In-Situ Evaluation Technique for Hydraulic Conductivity in Excavation Disturbed Zone (EDZ) (굴착영향영역(EDZ) 투수특성의 실험적 평가기술)

  • Kim, Hyung-Mok;Ryu, Dong-Woo;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • In this paper, in-situ technique for measuring hydraulic conductivity of Excavation Disturbed Zone (EDZ) in a direct way and its application to an Underground Research Laboratory (URL) site were introduced. It was understood that both the EDZ oriented test equipment as a hardware and analysis/evaluation technique as a software should be integrated for upgrading a quality of estimated EDZ hydraulic conductivity. The well-estimated EDZ hydraulic conductivity is expected to enhance a reliability of stability evaluation for caverns under groundwater table and design of a waterproof or drainage system as well as a grout system.