• 제목/요약/키워드: Direct Energy Deposition (DED)

검색결과 24건 처리시간 0.026초

DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구 (Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process)

  • 이은미;신광용;이기용;윤희석;심도식
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과 (Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition)

  • 오욱진;손용;손종윤;신광용;심도식
    • 소성∙가공
    • /
    • 제29권2호
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

DED 공정으로 제조된 경사조성재료 (STS 316L과 저합금강)의 미세조직 및 기계적특성 평가 (Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes)

  • 신기승;추웅;윤지현;양승용;김정한
    • 한국분말재료학회지
    • /
    • 제29권4호
    • /
    • pp.309-313
    • /
    • 2022
  • In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.

직접용착방식으로 적층된 Ti-6Al-4V의 기계적 특성에 미치는 미세조직 영향 연구 (Microstructural Effects on the Mechanical Properties of Ti-6Al-4V Fabricated by Direct Energy Deposition)

  • 김주호;전서연;박화진;김태열;최현주
    • 한국분말재료학회지
    • /
    • 제31권4호
    • /
    • pp.302-307
    • /
    • 2024
  • This study explored the process-structure-property (PSP) relationships in Ti-6Al-4V alloys fabricated through direct energy deposition (DED) additive manufacturing. A systematic investigation was conducted to clarify how process variables-specifically, manipulating the cooling rate and energy input by adjusting the laser power and scan speed during the DED process-influenced the phase fractions, pore structures, and the resultant mechanical properties of the samples under various processing conditions. Significant links were found between the controlled process parameters and the structural and mechanical characteristics of the produced alloys. The findings of this research provide foundational knowledge that will drive the development of more effective and precise control strategies in additive manufacturing, thereby improving the performance and reliability of produced materials. This, in turn, promises to make significant contributions to both the advancement of additive manufacturing technologies and their applications in critical sectors.

직접 에너지 적층 공정을 이용한 보수 공정에서 보수 폭에 따른 기계적 특성 관찰 (Effect of Repair Width on Mechanical Properties of 630 Stainless Steel Repaired by Direct Energy Deposition Process)

  • 오욱진;신광용;손용;심도식
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.42-50
    • /
    • 2020
  • This study explores the effects of repair width on the deposition characteristics and mechanical properties of stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we changed the width of the pre-machined zone for repair in order to prevent cracks from occurring at the inclined surface. As a result of the experiment, cracks of 10-40 ㎛ in length were formed along the inclined slope regardless of the repair width. Yield and tensile strength decreased slightly as the repair width increased, but the total and uniform elongation increased. This is due to the orientation of the crack. For specimens with a repair width of 20 mm, yield and tensile strength were 883 MPa and 1135 MPa, respectively. Total and uniform elongations were 14.3% and 8.2%, respectively. During observation of the fracture specimens, we noted that the fracture of the specimen with an 8 mm repair width occurred along the slope, whereas specimens with 14 mm and 20 mm repair depths fractured at the middle of the repaired region. In conclusion, we found that tensile properties were dependent upon the repair width and the inclination of the crack occurred at the interface.

DEPOSITION CHARACTERISTICS OF HIGH-THERMAL-CONDUCTIVITY STEEL IN THE DIRECT ENERGY DEPOSITION PROCESS AND ITS HARDNESS PROPERTIES AT HIGH TEMPERATURES

  • JONG-YOUN SON;GWANG-YONG SHIN;KI-YONG LEE;HI-SEAK YOON;DO-SIK SHIM
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1365-1369
    • /
    • 2020
  • Direct energy deposition (DED) is a three-dimensional (3D) deposition technique that uses metallic powder; it is a multi-bead, multi-layered deposition technique. This study investigates the dependence of the defects of the 3D deposition and the process parameters of the DED technique as well as deposition characteristics and the hardness properties of the deposited material. In this study, high-thermal-conductivity steel (HTCS-150) was deposited onto a JIS SKD61 substrate. In single bead deposition experiments, the height and width of the single bead became bigger with increasing the laser power. The powder feeding rate affected only the height, which increased as the powder feeding rate rose. The scanning speed inversely affected the height, unlike the powder feeding rate. The multi-layered deposition was characterized by pores, a lack of fusion, pores formed by evaporated gas, and pores formed by non-molten metal inside the deposited material. The porosity was quantitatively measured in cross-sections of the depositions, revealing that the lack of fusion tended to increase as the laser power decreased; however, the powder feeding rate and overlap width increased. The pores formed by evaporated gas and non-molten metal tended to increase with rising the laser power and powder feeding rate; however, the overlap width decreased. Finally, measurement of the hardness of the deposited material at 25℃, 300℃, and 600℃ revealed that it had a higher hardness than the conventional annealed SKD61.

레이저 분말적층 방식을 이용한 금속 3D 프린터 개발 및 티타늄 합금 부품 제조공정 최적화 (Development of a Metal 3D Printer Using Laser Powder Deposition and Process Optimization for Fabricating Titanium Alloy Parts)

  • 정원종;권영삼;김동식
    • 한국레이저가공학회지
    • /
    • 제18권3호
    • /
    • pp.1-5
    • /
    • 2015
  • A 3D printer based on laser powder deposition (LPD), also known as DED (direct energy deposition), has been developed for fabricating metal parts. The printer uses a ytterbium fiber laser (1070nm, 1kW) and is equipped with an Ar purge chamber, a three-dimensional translation stage and a powder feeding system composed of a powder chamber and delivery nozzles. To demonstrate the performance of the printer, a tapered cylinder of 320mm in height has been fabricated successfully using Ti-6Al-4V powders. The process parameters including the laser output power, the scan speed, and the powder feeding rate have been optimized. A 3D printed test specimen shows mechanical properties (yield strength, ultimate tensile strength, and elongation) exceeding the criteria to employed in a variety of Ti alloy applications.

Direct energy deposition 공정으로 제조된 SUS630 스테인리스강 적층조형체의 경도 및 미세조직 연구 (Hardness and Microstructure evolution of SUS630 Stainless steel Fabricated by Directed Energy Deposition)

  • 백성은;노경호;박진용;조용주;김정한
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.220-225
    • /
    • 2018
  • The microstructure and mechanical characteristics of SUS630 specimens fabricated using the direct energy deposition (DED) process are investigated. In DED, several process parameters such as laser scan speed, chamber gas flow, powder carrier gas flow, and powder feed rate are kept fixed; the laser power is changed as 150 W, 180 W, and 210 W. As the laser power increases, the surface becomes smooth, the thickness uniformity improves, and the size and number of pores decreases. With the increase in laser power, the hardness deviation decreases and the average hardness increases. The microstructure of the material is columnar; pores are formed preferentially along the columnar interface. The lath-martensite phase governs the overall microstructure. The volumetric fraction of the retained austenite phase is measured to increase with the increase of laser input power.

금속 3D 프린팅 소재와 폴리머 레이저접합에 관한 연구 (A Study on Laser Welding for 3D Printed Metal Plate and Polymer)

  • 예강현;김성욱;박거동;최해운
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.23-27
    • /
    • 2016
  • A 3D printed metal part and thermal plastic polymer part were joined by direct laser irradiation. The 3D metal part was fabricated by using DED(Direct Energy Deposition) with STS316 material. The experiment was carried out through no patterned metal surface, 3D metal printed surface and micro laser patterned surface. The most secure joining quality was obtained at the laser micro patterned surface specimen and the counterparts of polymers were PLA and PE based thermo plastics. The applied laser power was 350Watt and the distance of patterns was maintained at $150{\mu}m$. The laser line width was optimized at $450{\mu}m$ and the laser micro pattern depth was $180{\mu}m$ for the best joining quality. Based on the result analysis, the possibility of laser material joining for metal to polymer was proposed and multi-material joining will be possible in 3D laser direct material fabrication.

스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정 (Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder)

  • 손봉국;정연홍;조재흥
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.346-351
    • /
    • 2018
  • 금속 3D 프린팅 기술은 레이저 빔의 초점에 금속분말을 주입하는 방식에 따라 대표적으로 PBF(Powder Bed Fusion)방식과 DED(Direct Energy Deposition)방식으로 나뉜다. DED 방식은 금속 분말 도포와 동시에 레이저를 조사하여 3차원 구조물을 제작하는 금속 3D 프린팅 기술이고, PBF 방식은 일정 높이로 3차원 그래픽을 슬라이싱 한 후 한 층씩 금속 분말을 적층하여 레이저를 이용해 3차원 구조물을 제조하는 방식이다. DED 방식을 사용하면 레이저 클래딩, 금속 용접 등에는 강점을 가지지만 3D 형상을 제작할 경우 밀도가 낮아지는 문제점이 발생한다. DED 방식에서의 구조체 밀도 문제를 해결하기 위해 PBF 방식을 도입하면 상대적으로 밀도가 높은 3차원 구조물을 제작하는데 용이하다. 본 논문에서는 갈바노 스캐너와 광섬유로 전송되는 Nd:YAG 레이저 빔을 이용한 약 $30{\mu}m$ 크기의 스테인리스 강 분말을 이용하는 PBF 방식의 3차원 프린터를 제작하고, 이를 이용하여 얇은 금속 구조물을 제작하였다. 또한 레이저의 조사 횟수, 출력, 초점 크기, 스캐닝 속도에 따른 선폭의 최적조건을 찾았으며, 그 결과 최적 조건은 레이저 조사 횟수 2회, 출력 30 W, 초점 크기 $28.7{\mu}m$, 스캐닝 속도 200 mm/s에서 최소 선폭은 약 $85.3{\mu}m$로 측정되었다.