DOI QR코드

DOI QR Code

Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes

DED 공정으로 제조된 경사조성재료 (STS 316L과 저합금강)의 미세조직 및 기계적특성 평가

  • Shin, G. (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Choo, W. (Department of Materials Science and Engineering, Hanbat National University) ;
  • Yoon, J.H. (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Yang, S.Y. (Korea University of Technology and Education) ;
  • Kim, J.H. (Department of Materials Science and Engineering, Hanbat National University)
  • 신기승 (한국원자력연구원 재료안전기술개발부) ;
  • 추웅 (한밭대학교 신소재공학과) ;
  • 윤지현 (한국원자력연구원 재료안전기술개발부) ;
  • 양승용 (한국기술교육대학교 기계공학부) ;
  • 김정한 (한밭대학교 신소재공학과)
  • Received : 2022.08.12
  • Accepted : 2022.08.25
  • Published : 2022.08.28

Abstract

In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.

Keywords

Acknowledgement

이 논문은 과학기술정통부의 "다중 합금 적층 재료의 미세조직 최적화(과제번호 2020M2A8A402374221)"의 지원으로 수행되었으며 이에 감사드립니다. 또한, 이 논문은 2020학년도 한국기술교육대학교 연구연간(학기)제 연구비 지원에 의하여 연구되었음.

References

  1. A. Bandyopadhyay and B. Heer: Mater. Sci. Eng., R, 129 (2018) 1.
  2. J. O. Milewski: Additive Manufacturing of Metals, Springer International Publishing, Switzerland (2017).
  3. W. J. Oh, Y. Son and D. S. Shim: Korean J. Met. Mater., 57 (2019) 543.
  4. J. Mazumder, D. Dutta, N. Kikuchi and A. Ghosh: Opt. Lasers Eng., 34 (2000) 397.
  5. N. K. Adomako, S. Noh, C. S. Oh, S. Yang and J. H. Kim: Mater. Res. Lett., 7 (2019) 259.
  6. T. Allen, J. Busby, M. Meyer and D. Petti: Mater. Today 13 (2010) 14.
  7. J. H. Lee: Corros. Sci. Technol. 18 (2019) 33.
  8. S. S. Hwang: J. Nucl. Mater., 443 (2013) 321.
  9. V. N. Shah, D. B. Lowenstein, A. P. L. Turner, S. R. Ward, J. A. Gorman, P. E. MacDonald and G. H. Weidenhamer: Nucl. Eng. Des., 134 (1992) 199.
  10. G. S. Shin, J. H. Yoon, D. W. Kim, Y. H. Park and J. H. Kim: Korean J. Met. Mater., 58 (2020) 782.
  11. G. S. Shin, Y. H. Park, D. W. Kim, J. H. Yoon and J. H. Kim: Korean J. Met. Mater., 59 (2021) 81.
  12. B. Saleh, J. Jiang, A. Ma, D. Song, D. Yang and Q. Xu: Met. Mater. Int., 26 (2020) 933.
  13. G. Zheng, Z. Huang, Q. Yu, W. Hu, X. Qiu, A, Lixia, Y. Wang, Y. Jiao, Y. Zhou and H. Zhai: Met. Mater. Int., 26 (2020) 905.
  14. S. M. Catherine, L. Weiss, O. Perroud, D. Joguet, D. Boisselier and P. Laheurte: J. Mater. Process. Technol., 268 (2019) 171.
  15. F. Khaleghi, M. Tajally, E. Emadoddin and M. Mohri: Met. Mater. Int., 23 (2017) 915.
  16. N. K. Adomako, J. O. Kim, S. H. Lee, K. H. Noh and J. H. Kim: Mater. Sci. Eng., A, 732 (2018) 378.
  17. N. K. Adomako, J. O. Kim and J. H. Kim: Mater. Sci. Eng., A, 753 (2019) 208.
  18. B. Kieback, A. Neubrand and H. Riedel: Mater. Sci. Eng., A, 362 (2003) 81.
  19. B. Onuike and A. Bandyopadhyay: Addit. Manuf., 22 (2018) 844.
  20. J. S. Kim, J. N. Kim and C. Y. Kang: Korean J. Met. Mater., 56 (2018) 265.