1

레이저 분말적층 방식을 이용한 금속 3D 프린터 개발 및 티타늄 합금 부품 제조공정 최적화

가

Development of a Metal 3D Printer Using Laser Powder Deposition and Process Optimization for Fabricating Titanium Alloy Parts

Wonjong Jeong*, Young-Sam Kwon**, Dongsik kim*,⊠

*Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea **CetaTech, Seonjin-ri, Yonghyeong-myeon, Sacheon, Gyeongnam, 664-953, Republic of Korea

Abstract

A 3D printer based on laser powder deposition (LPD), also known as DED (direct energy deposition), has been developed for fabricating metal parts. The printer uses a ytterbium fiber laser (1070nm, 1kW) and is equipped with an Ar purge chamber, a three-dimensional translation stage and a powder feeding system composed of a powder chamber and delivery nozzles. To demonstrate the performance of the printer, a tapered cylinder of 320mm in height has been fabricated successfully using Ti-6Al-4V powders. The process parameters including the laser output power, the scan speed, and the powder feeding rate have been optimized. A 3D printed test specimen shows mechanical properties (yield strength, ultimate tensile strength, and elongation) exceeding the criteria to employed in a variety of Ti alloy applications.

), Additive manufacturing(

), Ti-6Al-4V alloys(Ti-6Al-4V

), 3D printing(3D

deposition(DED), Laser Powder Deposition(

Keywords: Near Net Shape(

(Near Net Shape) 3D 1. 서 론 가 3D (additive manufacturing) 가 , CAD (computer aided Ti-6Al-4V design) 가 가 가 . 3D 가 가 (Laser 가 Powder Deposition; LPD) Direct energy deposition Laser Engineered Net Shaping (LENS), Laser Metal Deposition (LMD), Direct Metal 가 50% 가 Deposition (DMD) 가 3 . LPD 가 가 가 : 2015 9 : 2015 21 : 2015 9 30 3D ⊠ dskim87@postech.ac.kr

가 18 3, 2015

가), Direct energy

2 . . .

Fig. 1 The image of laser powder deposition system.

Fig. 2 Schematic diagram of the laser powder deposition system.

Table 1 Process parameter

(LECO CS744)

(LECO ONH836)

Power (W)	600	700	800
Feeding rate (g/min)	9.6	10.8	12.4
Scan speed (mm/min)	360	480	

3. 실험 결과 및 고찰

Fig. 3

, 5

가

3D 3

가 가 가 press, HIP) 가 가 HIP 800W, 360mm/min, 3D 10.8g/min 25% HIP (a) Feeding rate: 10.8 (g/min) 26 **ASTM** 24

Fig. 3 (a) Effect of power on powder efficiency at feeding rate 10.8 g/min, (b) effect of feeding rate on powder efficiency at power 800 W.

가 Fig. 4 115mm, 40mm 5mm Ti-6Al-4V Ti-6Al-4V Fig. 5 3.8mm

Table 2 가 1079MPa 1107MPa **ASTM** 20% 7.1 % **ASTM** 70% , ASTM 가 3D

, Table 2 Alcisto Ti-6Al-4V 3D Ti-6Al-4V Alcisto

가 (hot isostatic **ASTM** 가 Table 4

Fig. 4 Fabricated tensile test specimen.

Fig. 5 Geometry of specimen for tensile test.

Table 2 Results of tensile test and requirements of Ti-6Al-4V products

	Yield strength (MPa)	Ultimate tensile strength (MPa)	Elongation (%)
Specimen	1079	1107	7.1
Reference Specimen ⁷	984	1069	5.4
Reference Specimen with HIP ⁷	870	953	11.8
Requirements [ASTM B988]	828	895	10

가 Fig. 6 Table 4

Table 3 Composition analysis of fabricated specimen and requirements of Ti-6Al-4V

Element(wt%) Material	О	N	Н	С
Specimen	0.15	0.05	0.0047	0.04
Requirements [ASTM B988]	< 0.30	< 0.05	< 0.015	<0.08

. Table 4

가

Fig. 7 3D

가

Fig. 6 Fabricated tapered circular tube by LPD process using Ti-6Al-4V powder.

Fig. 7 Fabricated tapered square tube by LPD process using Ti-6Al-4V powder.

Table 4 Size of cylinder model and fabricated cylinder

	Designed cylinder model	Fabricated cylinder
External diameter (upper surface)	137.25	137.4
External diameter (lower surface)	274.5	275.4
Thickness	3.2	4.1
Height	320	320.8

4. 결 론

3D

3 (LPD)

가

Ti-6Al-4V

,

. , 가 Ti-6Al-4V 30cm가 가 가 . 3D

후 기

References

- Y. W. Zhai et al., "Novel Forming of Ti-6Al-4V by Laser Engineered Net Shaping", Materials Science Forum, Vol. 765, 2013.
- 2) C. Qiu et al., "Fabrication of large Ti-6Al-4V structures by direct laser deposition," Journal of Alloys and Compounds, Vol. 629, 2015.

3) D. D. Gu et al., "Laser additive manufacturing of metallic components: Materials, processes and mechanisms", International Materials Reviews, Vol. 57, 2012.

3D

- 4) B. Vamsi Krishna et al., "Low stiffness porous Ti structures for load-bearing implants," Acta Biomaterialia, Vol. 3, 2007.
- 5) D. A. Hollander et al., "Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming," Biomaterials, Vol. 27, 2006.
- 6) P. A. Kobryn et al., "The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V," Scripta Materialia, Vol. 43, 2000.
- 7) J. Alcisto et al., "Tensile Properties and Microstructures of Laser-Formed Ti-6Al-4V," Journal of Materials Engineering and Performance, Vol. 20, 2011.
- 8) A. Bandyopadyay et al., "Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants", Journal of Materials Science, Vol. 20, 2008.