• Title/Summary/Keyword: Dipole charge distribution

Search Result 11, Processing Time 0.031 seconds

Ultrafine Particle Collection Using an Electret Fiber with a Dipole Charge Distribution (쌍극자전하분포를 가진 정전섬유를 이용한 대전된 초미립자의 집진)

  • Lee Myong-Hwa;Otani Yoshio;Kim Jong-Ho;Kim Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.145-153
    • /
    • 2005
  • An electret fiber with a dipole charge distribution was used to capture charged ultrafine particles in this study. Brownian diffusion and Coulombic force are the dominant collection mechanisms in the electret filtration of charged ultrafine particles. The interaction between Brownian diffusion and Coulombic force for the deposition of ultrafine particles onto a dipolarly charged fiber is studied by solving the convective diffusion equation including Coulombic force as an external force, and the numerical results are compared with the experimental data. As a result, it is shown that there is a negative interaction between Brownian diffusion and Coulombic force, i.e., Coulombic capture efficiency is reduced with decreasing Pe. These results suggest that Brownian diffusion and Coulombic capture efficiency, $\eta$$_{CD}$ is not a simple sum of Brownian diffusion efficiency, $\eta$$_{D}$ and Coulombic capture efficiency, $\eta$$_{C}$.

Poly-gate Quantization Effect in Double-Gate MOSFET (폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구)

  • 박지선;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.17-24
    • /
    • 2004
  • Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

Analysis on Particle Deposition onto a Heated Rotating Disk with Electrostatic Effect (정전효과가 있는 가열 회전원판으로의 입자침착 해석)

  • 유경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-432
    • /
    • 2002
  • Numerical analysis has been conducted to characterize deposition rates of aerosol particles onto a heated, rotating disk with electrostatic effect under the laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling, thermophoresis and electrophoresis. The aerosol particles were assumed to have a Boltzmann charge distribution. The electric potential distribution needed to calculate local electric fields around the disk was calculated from the Laplace equation. The Coulomb, the image, the dielectrophoretic and the dipole-dipole forces acting on a charged particle near the conducting rotating disk were included in the analysis. The averaged particle deposition vetocities and their radial distributions on the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference, along with a rotation speed of 0∼1,000rpm, a temperature difference of 0∼5K and a charged disk voltage of 0∼1000V.Finally, an approximate deposition velocity model for the rotating disk was suggested. The present numerical results showed relatively good agreement with the results of the present approximate model and the available experimental data.

A Study on the Space Charge Polarity Measurement Teasurement Technology of Cross-Linked Polyethylene for Power Cable (전력케이블용 가교폴리에틸렌의 공간전하 극성측정기술에 관한 연구)

  • 국상훈;서장수;김병인;박중순
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.23-31
    • /
    • 1992
  • Charged particle in the polymers is supposed to affect the electrical conduction and to lead them th dielectrical breakdown finally. So we measured the space charge distribution made by application of high electric field and evaluated the polarity of the charged particle affected on electrical conduction and space charge formed in the insulating materials by using temperature gradient thermally stimulated current measurement method(TG-TSC measurement). As a result, in the cross-linked polyethylene, A-peak was caused from dipole polarization, C-peak was caused from ionic space charge polarization and D-peak was injected trap hole. Also we found it crossible the evaluated the polarity of injected trap carrier and electron(or hole) of carrier trap in the cross-lined polyethylene. We found that ${\gamma}$-ray irradiated low density polyethylene had a relation to the electronic trap and we also could get the value of electric field distribution in the samples of which evaluation was available.

  • PDF

Analysis on particle deposition onto a heated, horizontal free-standing wafer with electrostatic effect (정전효과가 있는 가열 수평웨이퍼로의 입자침착에 관한 해석)

  • Yoo, Kyung-Hoon;Oh, Myung-Do;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1284-1293
    • /
    • 1997
  • The electrostatic effect on particle deposition onto a heated, Horizontal free-standing wafer surface was investigated numerically. The deposition mechanisms considered were convection, Brownian and turbulent diffusion, sedimentation, thermophoresis and electrostatic force. The electric charge on particle needed to calculate the electrostatic migration velocity induced by the local electric field was assumed to be the Boltzmann equilibrium charge. The electrostatic forces acted upon the particle included the Coulombic, image, dielectrophoretic and dipole-dipole forces based on the assumption that the particle and wafer surface are conducting. The electric potential distribution needed to calculate the local electric field around the wafer was calculated from the Laplace equation. The averaged and local deposition velocities were obtained for a temperature difference of 0-10 K and an applied voltage of 0-1000 v.The numerical results were then compared with those of the present suggested approximate model and the available experimental data. The comparison showed relatively good agreement between them.

The design and fabricationt for ion fraction measurement of plasma generator (플라즈마발생기의 이온분율 측정 장치 설계 및 제작)

  • Lee, Chan-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.368-368
    • /
    • 2008
  • Ion implantation has been widely developed during the past decades to become a standard industrial tool. To comply with the growing needs in ion implantation, innovative technology for the control of ion beam parameters is required. Beam current, beam profile, ion fractions are of great interest when uniformity of the implant is an issue. Especially, it is important to measure the spatial distribution of beam power and also the energy distribution of accelerated ions. This energy distribution is influenced by the proportion of mass for ion in the plasma generator(ion source) and by charge exchange and dissociation within the accelerator structure and also by possible collective effects in the neutralizer which may affect the energy and divergence of ions. Hydrogen atom has been the object of a good study to investigate the energy distribution. Hydrogen ion sources typically produce multi-momentum beams consisting of atomic ion ($H^+$) and molecular ion ($H_2^+$ and $H_3^+$). In the beam injector, the molecular ions pass through a charge-exchanges gas cell and break up into atomic with one-half (from $H_2^+$) or one-third (from $H_3^+$) according to their accelerated energy. Burrell et al. have observed the Doppler shifted lines from incident $H^+$, $H_2^+$, and $H_3^+$ using a Doppler shift spectroscopy. Several authors have measured the proportion of mass for hydrogen ion and deuterium using an ion source equipped with a magnetic dipole filter. We developed an ion implanter with 50-KeV and 20-mA ion source and 100-keV accelerator tube, aiming at commercial uses. In order to measure the proportion of mass for ions, we designed a filter system which can be used to measure the ion fraction in any type of ion source. The hydrogen and helium ion species compositions are used a filter system with the two magnets configurations.

  • PDF

Characteistics of Charge Traps and Poling Behavior of Poly (Vinylidene Fluoride)

  • Seo Jeong Won;Ryoo Kun Sang;Lee Hoo Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.218-221
    • /
    • 1985
  • Transient charging and discharging currents as well as space charge limited currents have been measured in biaxially stretched poly(vinylidene fluoride) film under various poling fields and temperatures. At low temperatures and short poling times, the I-V characteristics showed shallow trap behavior. When the current values extrapolated to the infinite time, the I-V characteristics indicate that the distribution of the trap energy levels is uniform or very broad. The abnormal suppression of current at higher poling voltages and the high discharge rate observed also in the same voltage range are attributed to the morphological changes due to dipole reorientation.

Theoretical Consideration of Nondestructive Testing by use of Vertical Magnetization and Magneto-Optical Sensor

  • Lee, Jinyi;Tetsuo Shoji;Dowon Seo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.640-648
    • /
    • 2004
  • This paper describes a new magnetization method for non-destructive testing with magneto-optical sensor (denoted as MO sensor) which have the following characteristic : high observation sensitivity, independence of the crack orientation, and precise imaging of a complex crack geometry such as multiple cracks. When a magnetic field is applied normally to the surface of a specimen which is significantly larger than its defects, approximately the same magnetic charge per unit area occurs on the surface of the specimen. If there is a crack in the specimen, magnetic charge per unit area has the same value at the bottom of the crack. The distribution of the vertical component of the magnetic flux density, B$\_$Z/, is almost uniform over the no-crack area (denoted as B$\_$Z,BASE/), while the magnetic flux density is smaller in the surroundings of the crack(denoted as B$\_$Z,CRACK/) If B$\_$Z, BASE/ is a bit larger than the saturated magnetic flux density of the MO sensor (B$\_$s/) , then small magnetic domains occur over the crack area and a large domain over the non-crack area because B$\_$Z,CRACK/ is smaller than B$\_$s/.

Comparison of Three Modeling Methods for Identifying Unknown Magnetization of Ferromagnetic Thin Plate

  • Choi, Nak-Sun;Kim, Dong-Wook;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Hong-Joon;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.799-805
    • /
    • 2011
  • This study presents three different magnetization models for identifying unknown magnetization of the ferromagnetic thin plate of a ship. First, the forward problem should be solved to accurately predict outboard magnetic fields due to the magnetization distribution estimated at a certain time. To achieve this, three different modeling methods for representing remanent magnetization (i.e., magnetic charge method, magnetic dipole array method, and magnetic moment method) were utilized. Material sensitivity formulas containing the first-order gradient information of an objective function were then adopted for an efficient search of an optimum magnetization distribution on the hull. The validity of the proposed methods was tested with a scale model ship, and field signals predicted from the three different models were thoroughly investigated with reference to the experimental data.

A DFT Study on the Polarizability of Di-substituted Arene (o-, m-, p-) Molecules used as Supercharging Reagents during Electrospray Ionization Mass Spectrometry

  • Abaye, Daniel A.;Aniagyei, Albert;Adedia, David;Nielsen, Birthe V.;Opoku, Francis
    • Mass Spectrometry Letters
    • /
    • v.13 no.3
    • /
    • pp.49-57
    • /
    • 2022
  • During electrospray ionization mass spectrometry (ESI-MS) analysis of proteins, the addition of supercharging agents allows for adjusting the maximal charge state, affecting the charge state distribution, and increases the number of ions reaching the detector thus, improving signal detection. We postulate that in di-substituted arene isomers, molecules with higher polarizability values should generate greater interactions and hence elicit higher signal intensities. Polarizability is an electronic parameter which has been demonstrated to predict many chemical interactions. Many properties can be predicted based on charge polarization. Molecular polarizability is a vital descriptor for explaining intermolecular interactions. We employed DFT (density functional/Hartree-Fock hybrid model, B3LYP)-derived descriptors and computed molecular polarizability for ten disubstituted arene reagents, each set made up of three (ortho, meta, para) isomers, with reported use as supercharging reagents during ESI experiments. The atomic electronic inputs were ionization potential (IP), electron affinity (EA), electronegativity (𝛘), hardness (η), chemical potential (µ), and dipole moment (D). We determined that the para isomers showed the highest polarizability values in nine of the ten sets. There was no difference between the ortho and meta isomers. Polarizability also increased with increasing complexity of the substituents on the benzene ring. Polarizability correlated positively with IP, EA, 𝛘, η, and D but correlated negatively with chemical potential. This DFT study predicts that the para isomers of di-substituted arene isomers should elicit the strongest ESI responses. An experimental comparison of the three isomers, especially of larger supercharging molecules, could be carried out to establish this premise.