• Title/Summary/Keyword: Ding module

Search Result 14, Processing Time 0.028 seconds

DING INJECTIVE MODULES OVER FROBENIUS EXTENSIONS

  • Wang, Zhanping;Yang, Pengfei;Zhang, Ruijie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.217-224
    • /
    • 2021
  • In this paper, we study Ding injective modules over Frobenius extensions. Let R ⊂ A be a separable Frobenius extension of rings and M any left A-module, it is proved that M is a Ding injective left A-module if and only if M is a Ding injective left R-module if and only if A ⊗R M (HomR(A, M)) is a Ding injective left A-module.

DING PROJECTIVE DIMENSION OF GORENSTEIN FLAT MODULES

  • Wang, Junpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1935-1950
    • /
    • 2017
  • Let R be a Ding-Chen ring. Yang [24] and Zhang [25] asked whether or not every R-module has finite Ding projective or Ding injective dimension. In this paper, we give a new characterization of that all modules have finite Ding projective and Ding injective dimension in terms of the relationship between Ding projective and Gorenstein flat modules. We also give an example to obtain negative answer to the above question.

HOMOLOGICAL PROPERTIES OF MODULES OVER DING-CHEN RINGS

  • Yang, Gang
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.31-47
    • /
    • 2012
  • The so-called Ding-Chen ring is an n-FC ring which is both left and right coherent, and has both left and right self FP-injective dimensions at most n for some non-negative integer n. In this paper, we investigate the classes of the so-called Ding projective, Ding injective and Gorenstein at modules and show that some homological properties of modules over Gorenstein rings can be generalized to the modules over Ding-Chen rings. We first consider Gorenstein at and Ding injective dimensions of modules together with Ding injective precovers. We then discuss balance of functors Hom and tensor.

DING PROJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING MODULE

  • Zhang, Chunxia;Wang, Limin;Liu, Zhongkui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.339-356
    • /
    • 2014
  • In this paper, we introduce and discuss the notion of $D_C$-projective modules over commutative rings, where C is a semidualizing module. This extends Gillespie and Ding, Mao's notion of Ding projective modules. The properties of $D_C$-projective dimensions are also given.

GORENSTEIN MODULES UNDER FROBENIUS EXTENSIONS

  • Kong, Fangdi;Wu, Dejun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1567-1579
    • /
    • 2020
  • Let R ⊂ S be a Frobenius extension of rings and M a left S-module and let 𝓧 be a class of left R-modules and 𝒚 a class of left S-modules. Under some conditions it is proven that M is a 𝒚-Gorenstein left S-module if and only if M is an 𝓧-Gorenstein left R-module if and only if S ⊗R M and HomR(S, M) are 𝒚-Gorenstein left S-modules. This statement extends a known corresponding result. In addition, the situations of Ding modules, Gorenstein AC modules and projectively coresolved Gorenstein flat modules are considered under Frobenius extensions.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.

3D numerical simulation of temperature on Pilot tube

  • Ying Wang;Baogeng Ding
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.248-251
    • /
    • 2006
  • Multi-physics problem is considered for the Pitot tube located in uniform freon gas flow with high Mach number and the 3D numerical results of temperature on Pitot tube is given. The model is created by using structural module of ANSYS, the grids are obtained by ICEM, and the problem is solved and the data post-processing is done by CFX.

  • PDF

RINGS WITH VARIATIONS OF FLAT COVERS

  • Demirci, Yilmaz Mehmet;Turkmen, Ergul
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.799-812
    • /
    • 2019
  • We introduce flat e-covers of modules and define e-perfect rings as a generalization of perfect rings. We prove that a ring is right perfect if and only if it is semilocal and right e-perfect which generalizes a result due to N. Ding and J. Chen. Moreover, in the light of the fact that a ring R is right perfect if and only if flat covers of any R-module are projective covers, we study on the rings over which flat covers of modules are (generalized) locally projective covers, and obtain some characterizations of (semi) perfect, A-perfect and B-perfect rings.