Acknowledgement
Supported by : National Natural Science Foundation of China
References
- L. L. Avramov and H.-B. Foxby, Homological dimension of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129-155. https://doi.org/10.1016/0022-4049(91)90144-Q
- L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85 (2002), no. 2, 393-440. https://doi.org/10.1112/S0024611502013527
- N. Q. Ding, Y. L. Li, and L. X. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. https://doi.org/10.1017/S1446788708000761
- E. E. Enochs and O. M. G. Jenda, Resolutions by Gorenstein injective and projective modules and modules of finite injective dimension over Gorenstein rings, Comm. Algebra 23 (1995), no. 3, 869-877. https://doi.org/10.1080/00927879508825254
- E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics no. 30, Walter De Gruyter, New York, 2000.
- J. Gillespie, Model structures on modules over Ding-Chen rings, Homology Homotopy Appl. 12 (2010), no. 1, 61-73. https://doi.org/10.4310/HHA.2010.v12.n1.a6
- R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.
- H. Holm, Gorenstein derived functors, Proc. Amer. Math. Soc. 132 (2004), no. 7, 1913-1923. https://doi.org/10.1090/S0002-9939-04-07317-4
- A. Iacob, Generalized Tate cohomology, Tsukuba J. Math. 29 (2005), no. 2, 389-404. https://doi.org/10.21099/tkbjm/1496164963
- N. Mahdou and M. Tamekkante, Strongly Gorenstein flat modules and dimensions, Chin. Ann. Math. Ser. B 32 (2011), no. 4, 533-548. https://doi.org/10.1007/s11401-011-0659-y
- L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), no. 4, 491-506. https://doi.org/10.1142/S0219498808002953
- K. Pinzon, Absolutely pure covers, Comm. Algebra 36 (2008), 2186-2194. https://doi.org/10.1080/00927870801952694
- W. Ren, Z. K. Liu, and G. Yang, Derived categories with respect to Ding modules, J. Algebra Appl. 12 (2013), no. 6, 1350021, 14 pp.
- O. Veliche, Gorenstein projective dimension for complexes, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1257-1283. https://doi.org/10.1090/S0002-9947-05-03771-2
- Z. P. Wang, Reseaches of relative homological properties in the category of complexes, Ph.D. thesis, Northwest Normal University, China, 2010.
- C. H. Yang, Strongly Gorenstein flat and Gorenstein FP-injective modules, Turkish J. Math. 37 (2013), no. 2, 218-230.
- G. Yang, Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc. 49 (2012), no. 1, 31-47. https://doi.org/10.4134/JKMS.2012.49.1.031
- G. Yang, Z. K. Liu, and L. Liang, Ding projective and Ding injective modules, Algebra Colloq. 20 (2013), no. 4, 601-612. https://doi.org/10.1142/S1005386713000576
Cited by
- Avramov–Martsinkovsky type exact sequences with tor functors 2017, https://doi.org/10.1007/s10114-017-7089-z