References
- Cryptohaze, GPU Rainbow Cracker; https://www.cryptohaze.com
- Free Rainbow Tables, Distributed Rainbow Table Project; http://freerainbowtables.com
- Ophcrack, Windows Password Cracker; http://ophcrack.sourceforge.net
- RainbowCrack Project, http://project-rainbowcrack.com
- E. P. Barkan, Cryptanalysis of ciphers and protocols, Ph.D. Thesis, Technion-Israel Institute of Technology, March 2006.
- E. Barkan, E. Biham, and A. Shamir, Rigorous bounds on cryptanalytic time/memory tradeoffs, in: CRYPTO 2006, pp. 1-21, LNCS 4117, Springer, 2006.
- D. J. Bernstein and T. Lange, Computing small discrete logarithms faster, in: INDOCRYPT 2012, pp. 317-338, LNCS 7668, Springer, 2012.
- D. J. Bernstein and T. Lange, Non-uniform cracks in the concrete: the power of free precomputation, in: ASIACRYPT 2013, pp. 321-340, LNCS 8270, Springer, 2013.
- A. Biryukov, S. Mukhopadhyay, and P. Sarkar, Improved time-memory trade-offs with multiple data, in: SAC 2005, pp. 110-127, LNCS 3897, Springer, 2006.
- A. Biryukov and A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, in: ASIACRYPT 2000, pp. 1-13, LNCS 1976, Springer, 2000.
- C. Calik, How to invert one-way functions: time-memory trade-off method, M.S. Thesis, Middle East Technical University, January 2007.
- A. E. Escott, J. C. Sager, A. P. L. Selkirk, and D. Tsapakidis, Attacking elliptic curve cryptosystems using the parallel Pollard rho method, CryptoBytes 4 (1999), 15-19.
- M. E. Hellman, A cryptanalytic time-memory trade-off, IEEE Trans. Inform. Theory 26 (1980), no. 4, 401-406. https://doi.org/10.1109/TIT.1980.1056220
- R. Henry, K. Henry, and I. Goldberg, Making a nymbler Nymble using VERBS, in: PETS 2010, pp. 111-129, LNCS 6205, Springer, 2010.
- Y. Hitchcock, P. Montague, G. Carter, and E. Dawson, The efficiency of solving multiple discrete logarithm problems and the implications for the security of fixed elliptic curves, Int. J. Inf. Secur. 3 (2004), 86-98. https://doi.org/10.1007/s10207-004-0045-9
- J. Hong, The cost of false alarms in Hellman and rainbow tradeoffs, Des. Codes Cryptogr. 57 (2010), no. 3, 293-327. https://doi.org/10.1007/s10623-010-9368-x
- J. Hong and S. Moon, A comparison of cryptanalytic tradeoff algorithms, J. Cryptology 26 (2013), no. 4, 559-637. https://doi.org/10.1007/s00145-012-9128-3
- D. Huhnlein, M. J. Jacobson Jr., and D. Weber, Towards practical non-interactive public-key cryptosystems using non-maximal imaginary quadratic orders, Des. Codes Cryptogr. 39 (2003), no. 3, 281-299.
- B.-I. Kim and J. Hong, Analysis of the non-perfect table fuzzy rainbow tradeoff, IACR Cryptology ePrint Archive, Report 2012/612, version 20121116:123317; http://eprint.iacr.org/2012/612.
- B.-I. Kim and J. Hong, Analysis of the non-perfect table fuzzy rainbow tradeoff, in: ACISP 2013, pp. 347-362, LNCS 7959, Springer, 2013.
- B.-I. Kim and J. Hong, Analysis of the perfect table fuzzy rainbow tradeoff, J. Appl. Math. 2014 (2014), Article ID 765394, 19 pages.
- F. Kuhn and R. Struik, Random walks revisited: extensions of Pollard's rho algorithm for computing multiple discrete logarithms, in: SAC 2001, pp. 212-229, LNCS 2259, Springer, 2001.
- H. T. Lee, J. H. Cheon, and J. Hong, Accelerating ID-based encryption based on trapdoor DL using pre-computation, IACR Cryptology ePrint Archive, Report 2011/187, version 20120112:021951; http://eprint.iacr.org/2011/187.
- G. W. Lee and J. Hong, A comparison of perfect table cryptanalytic tradeoff algorithms, IACR Cryptology ePrint Archive, Report 2012/540, version 20140622:150618; http://eprint.iacr.org/2012/540.
- D. Ma and J. Hong, Success probability of the Hellman trade-off, Inform. Process. Lett. 109 (2009), no. 7, 347-351. https://doi.org/10.1016/j.ipl.2008.12.002
- U. M. Maurer and Y. Yacobi, Non-interactive public-key cryptography, in: EUROCRYPT '91, pp. 498-507, LNCS 547, Springer, 1991.
- U. M. Maurer and Y. Yacobi, A non-interactive public-key distribution system, Des. Codes Cryptogr. 9 (1996), no. 3, 305-316. https://doi.org/10.1023/A:1027332606155
- Y. Murakami and M. Kasahara, A discrete logarithm problem over composite modulus, Electronics and Communications in Japan (Part III) 76 (1993), 37-46.
- K. Nohl, Attacking phone privacy, presented at Black Hat USA 2010, Las Vegas, July 2010.
- K. Nohl and C. Paget, GSM-SRSLY?, presented at 26th Chaos Communication Congress (26C3), Berlin, December 2009.
- P. Oechslin, Making a faster cryptanalytic time-memory trade-off, in: CRYPTO 2003, pp. 617-630, LNCS 2729, Springer, 2003.
- K. G. Paterson and S. Srinivasan, On the relations between non-interactive key distribution, identity-based encryption and trapdoor discrete log groups, Des. Codes Cryptogr. 52 (2009), no. 2, 219-241. https://doi.org/10.1007/s10623-009-9278-y
- S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over GF(p) and its cryptographic significance, IEEE Trans. Inform. Theory 24 (1978), no. 1, 106-110. https://doi.org/10.1109/TIT.1978.1055817
- J. M. Pollard, Monte Carlo methods for index computation (mod p), Math. Comp. 32 (1978), no. 143, 918-924. https://doi.org/10.1090/S0025-5718-1978-0491431-9
- C. P. Schnorr and H. W. Lenstra Jr., A Monte Carlo factoring algorithm with linear storage, Math. Comp. 43 (1984), no. 167, 289-311. https://doi.org/10.1090/S0025-5718-1984-0744939-5
- D. Shanks, Class number, a theory of factorization and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pp. 415-440. Amer. Math. Soc., Providence, R.I., 1971.
- V. Shoup, Lower bounds for discrete logarithms and related problems, in: EUROCRYPT '97, pp. 256-266, LNCS 1223, Springer, 1997.
- E. Teske, Speeding up Pollard's rho method for computing discrete logarithms, in: ANTS-III, pp. 541-554, LNCS 1423, Springer, 1998.
- E. Teske, An elliptic curve trapdoor system, J. Cryptology 19 (2006), no. 1, 115-133. https://doi.org/10.1007/s00145-004-0328-3
Cited by
- Recent progress on the elliptic curve discrete logarithm problem vol.78, pp.1, 2016, https://doi.org/10.1007/s10623-015-0146-7