• Title/Summary/Keyword: Dimensional Instability

Search Result 301, Processing Time 0.023 seconds

The Effect of Electron Diffusion on the Instability of a Townsend Discharge (전자 확산 효과가 Townsend 방전 불안정성에 미치는 영향)

  • Mikhailenko, Vladimir
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • The role of the electron diffusion on the stability of a Townsend discharge was investigated with the linear stability theory for the one-dimensional fluid equation with drift-diffusion approximation. It was proved that the discovered instability occurs as a result of the coupled action of electron diffusion and the perturbed electric field by space charge. The larger electron diffusion results in the faster growth rate at the regime of small perturbation of the electric field by space charges.

Theoretical Study on Acoustic Instability in Liquid Rocket Engine (액체 로켓 엔진의 음향 불안정 예측에 관한 이론적 연구)

  • Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.92-100
    • /
    • 2000
  • One method to analyse acoustic modes is proposed to predict the characteristics of acoustic instability in liquid rocket engine. It is based on the similarity between transverse acoustic modes and adopts two-dimensional axisymmetric geometry. Using this method, the first tangential mode in the prototype combustor can be analysed through the analysis of the first radial mode in the model combustor with doubled chamber diameter. Sample numerical calculation is demonstrated applying this method to sample rocket engine and thereby acoustic instabilities of the engine are investigated. The present results show a good agreement with the previous findings. The numerical analysis based on the proposed method is cost-effective and serves as the first approximation to the true solution.

  • PDF

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

Numerical Analysis of Dynamic Combustion in HyShot Scramjet Combustor with a Transverse Fuel Injection (수직 연료 분사기구를 포함하는 HyShot 스크램제트 연소기의 동적 연소 유동해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.79-85
    • /
    • 2007
  • This paper describes numerical efforts to investigate combustion characteristics of HyShot scramjet combustor, where gaseous hydrogen is transversely injected into a supersonic cross flow. The corresponding altitude, angle of attack, and equivalence ratio are 35-23 km, $0^{\circ}$, and 0.426 respectively. Two-dimensional simulation reasonably predicts combustor inner pressure distribution and reveals periodic combustion characteristics of HyShot scramjet combustor. Altitude effects are also investigated and the strength of flow instability and subsonic boundary layer thickness affect the combustion efficiency according to altitudes. Frequency analyses provide the flow instability effects on the turbulent combustion in HyShot scramjet combustor.

  • PDF

Closed-Form Plastic Collapse Loads of Pipe Bends Under Combined Pressure and In-Plane Bending (압력과 모멘트의 복합하중을 받는 곡관의 소성 붕괴하중 예측식 개발)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1008-1015
    • /
    • 2006
  • Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed.

Numerical analysis of a complex slope instability: Pseudo-wedge failure

  • Babanouri, Nima;Sarfarazi, Vahab
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.669-676
    • /
    • 2018
  • The "pseudo-wedge" failure is a name for a complex instability occurring at the Sarcheshmeh open-pit mine (Iran). The pseudo-wedge failure contains both the rock bridge failure and sliding along pre-existing discontinuities. In this paper, a cross section of the failure area was first modeled using a bonded-particle method. The results indicated development of tensile cracks at the slope toe which explains the freedom of pseudo-wedge blocks to slide. Then, a three-dimensional discrete element method was used to perform a block analysis of the instability. The technique of shear strength reduction was used to calculate the factor of safety. Finally, the influence of geometrical characteristics of the mine wall on the pseudo-wedge failure was investigated. The safety factor significantly increases as the dip and dip direction of the wall decrease, and reaches an acceptable value with a 10-degree decrease of them.

Multiple Unstable Modes in the Reacting Mixing Layer (반응혼합층의 복수 불안정성 모드)

  • Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.616-623
    • /
    • 1996
  • This paper investigates the linear stability of reacting mixing layers with special emphasis on the existence of multiple unstable modes. The governing equations for laminar flows are from two-dimensional compressible boundary-layer equations. The chemistry is a finite rate single step irreversible reaction with Arrhenius kinetics. For the incompressible reacintg mixing layer with variable density. A necessary condition for instability has been derived. The condition requires that the angular momentum, not the vorticity, to have a maximum in the flow domain. New inflectional modes of instability are found to exist in the outer part of the mixing layer. For the compressible reacting mixing layer, supersonic unstable modes may exist in the abscence of a generalized inflection point. The outer modes at high Mach numbers in the reacting mixing layer are continuations of the inflectional modes of low Mach number flows. However, the generalized inflection point is less important at supersonic flows.

Combustion Stability Analysis using Feedback Transfer Function (피드백 전달함수를 이용한 연소 안정성 해석)

  • Kim, Jina;Yoon, Myunggon;Kim, Daesik
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper we propose a new approach for an analysis and a prediction of combustion instability of lean premixed gas turbines. Our approach is based on the Nyquist stability criterion in control theory and a transfer function representation of a one-dimensional (1D) thermoacoustic system. A key advantage of the proposed approach is that one can systematically characterize the effects of various parameters of a combustor system on combustion instability. Our analysis method was applied to a real combustion system and the analysis results were consistent with experimental data.

Thermoelastic Instability in Functionally Graded Materials (경사기능재료에서의 열탄성 불안정성)

  • Jang, Yong-Hoon;Ahn, Seong-Ho;Lee, Seung-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.130-137
    • /
    • 2006
  • A transient finite element simulation is developed for the two-dimensional thermoelastic contact problem of a stationary functionally graded material between sliding layers, with frictional heat generation. Thermoelastic instability in functionally graded materials is investigated. The critical speed of functionally graded material coating disk is larger than that of the conventional steel disk. The effect of the nonhomogeneity parameter in functionally graded material is also investigated. The results show that functionally gradient materials restrain the growth of perturbation and delay the contact separation.

The Flow Instability Over the Infinite Rotating Disk

  • Lee, Yun-Yong;Hwang, Young-Kyu;Lee, Kwang-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1388-1396
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. The instability labeled Type II by Faller occurs first at lower Reynolds number than that of well known Type I instability. Detailed numerical values of the amplification rates, neutral curves and other characteristics of the two instabilities have been calculated over a wide range of parameters. Presented are the neutral stability results concerning the two instability modes by solving the appropriate linear stability equations reformulated not only by considering whole convective terms but also by correcting some errors in the previous stability equations. The present stability results agree with the previously known ones within reasonable limit. Consequently, the flow is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.75. Some spatial amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$ = 12.5$^{\circ}$ to 15$^{\circ}$. Also, some temporal amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$= 12$^{\circ}$ to 15$^{\circ}$. The flow instability was observed by using a white titanium tetrachloride gas over rotating disk system. When the numerical results are compared to the present experimental data, the numerical results agree quantitatively, indicating the existence of the selective frequency mechanism.