• 제목/요약/키워드: Digraph

검색결과 63건 처리시간 0.031초

조립된 Building Block IC의 설계디자인의 문제 (The Layout Design of Structured Building Block Integrated Circuit)

  • Yi, Cheon-Hee
    • 대한전자공학회논문지
    • /
    • 제24권6호
    • /
    • pp.1056-1067
    • /
    • 1987
  • This paper presents a design procedure for building block integrated circuits that is based on the digraph relaxation model. A set of optimization procedure is prosented for a minimum area and routing-fecsible placement of IC building blocks. Chip area optimization is subject to perimeter and area constraints on the component rectangles in the dissection.

  • PDF

GRAPHS WITH ONE HOLE AND COMPETITION NUMBER ONE

  • KIM SUH-RYUNG
    • 대한수학회지
    • /
    • 제42권6호
    • /
    • pp.1251-1264
    • /
    • 2005
  • Let D be an acyclic digraph. The competition graph of D has the same set of vertices as D and an edge between vertices u and v if and only if there is a vertex x in D such that (u, x) and (v, x) are arcs of D. The competition number of a graph G, denoted by k(G), is the smallest number k such that G together with k isolated vertices is the competition graph of an acyclic digraph. It is known to be difficult to compute the competition number of a graph in general. Even characterizing the graphs with competition number one looks hard. In this paper, we continue the work done by Cho and Kim[3] to characterize the graphs with one hole and competition number one. We give a sufficient condition for a graph with one hole to have competition number one. This generates a huge class of graphs with one hole and competition number one. Then we completely characterize the graphs with one hole and competition number one that do not have a vertex adjacent to all the vertices of the hole. Also we show that deleting pendant vertices from a connected graph does not change the competition number of the original graph as long as the resulting graph is not trivial, and this allows us to construct infinitely many graph having the same competition number. Finally we pose an interesting open problem.

Weakly Complementary Cycles in 3-Connected Multipartite Tournaments

  • Volkmann, Lutz;Winzen, Stefan
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.287-302
    • /
    • 2008
  • The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is called cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that V(D) = $V(C_1)\;{\cup}\;V(C_2)$, and a multipartite tournament D is called weakly cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that $V(C_1)\;{\cup}\;V(C_2)$ contains vertices of all partite sets of D. The problem of complementary cycles in 2-connected tournaments was completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of length t and ${\mid}V(T)\mid$ - t for all $3\;{\leq}\;t\;{\leq}\;{\mid}V(T)\mid/2$. Recently, Volkmann [8] proved that each regular multipartite tournament D of order ${\mid}V(D)\mid\;\geq\;8$ is cycle complementary. In this article, we analyze multipartite tournaments that are weakly cycle complementary. Especially, we will characterize all 3-connected c-partite tournaments with $c\;\geq\;3$ that are weakly cycle complementary.

The k-Rainbow Domination and Domatic Numbers of Digraphs

  • Sheikholeslami, S.M.;Volkmann, Lutz
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.69-81
    • /
    • 2016
  • For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set V (D) to the set of all subsets of the set $\{1,2,{\ldots},k\}$ such that for any vertex $v{\in}V(D)$ with $f(v)={\emptyset}$ the condition ${\cup}_{u{\in}N^-(v)}$ $f(u)=\{1,2,{\ldots},k\}$ is fulfilled, where $N^-(v)$ is the set of in-neighbors of v. A set $\{f_1,f_2,{\ldots},f_d\}$ of k-rainbow dominating functions on D with the property that $\sum_{i=1}^{d}{\mid}f_i(v){\mid}{\leq}k$ for each $v{\in}V(D)$, is called a k-rainbow dominating family (of functions) on D. The maximum number of functions in a k-rainbow dominating family on D is the k-rainbow domatic number of D, denoted by $d_{rk}(D)$. In this paper we initiate the study of the k-rainbow domatic number in digraphs, and we present some bounds for $d_{rk}(D)$.

단일 간선 노드 전정 사이클 검출 (Cycle Detection Using Single Edge Node Pruning)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.149-154
    • /
    • 2024
  • 본 논문은 단일 링크드 리스트의 사이클을 검출하는데 특화된 Floyd의 거북이와 토끼 경주법이 다중 입력, 다중 출력을 갖는 무 방향 그래프, 방향 그래프, 트리 등에 대해서는 사이클 검출 실패의 단점을 보완한 알고리즘을 제안하였다. 제안된 알고리즘은 단순히 단일 간선을 갖는 원천(source)과 싱크(sink)를 가지치기하는 단일 간선 노드 전정 사이클 검출 방법을 적용하였다. 제안된 알고리즘을 다양한 리스트, 무 방향 그래프, 방향 그래프, 트리 등에 적용한 결과 모든 경우에 대해 사이클을 검출하는데 성공하였다. 따라서 제안된 알고리즘은 사이클 검출 분야에서 가장 단순하고 빠른 장점을 갖고 있다.

최대 인접 병합 방법을 적용한 방향 그래프의 병목지점 탐색 알고리즘 (A Bottleneck Search Algorithm for Digraph Using Maximum Adjacency Merging Method)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.129-139
    • /
    • 2012
  • 공급처 s와 수요처 t, 호가 수용량을 갖고 있는 방향 그래프 망 $D=(N,A),n{\in}N,a=c(u,v){\in}A$에 대해, 공급처 s에서 수요처 t로의 최대 흐름양은 N을 $s{\in}S$$t{\in}T$의 집합으로 분리시키는 최소절단값이 결정한다. 최소절단을 찾는 대표적인 알고리즘으로는 수행복잡도 $O(NA^2)$의 Ford-Fulkerson이 있다. 이 알고리즘은 가능한 모든 증대경로를 탐색하여 병목지점을 결정한다. 알고리즘이 종료되면 병목지점들의 조합으로 N=S+T의 절단이 되는 최소 절단을 결정해야 한다. 본 논문은 S={s}, T={t}를 초기값으로 설정하고, 망의 최대 수용량 호 $_{max}c(u,v)$를 인접한 S나 T로 병합시키고 절단값을 구하는 최대인접병합 알고리즘을 제안하였다. 최대인접병합 알고리즘은 n-1회를 수행하지만 알고리즘 수행 과정에서 최소절단을 찾는 장점을 갖고 있다. Ford-Fulkerson과 최대인접병합 알고리즘을 다양한 8개의 방향 그래프에 적용한 결과 제안된 알고리즘은 수행복잡도 O(N)인 n-1회 수행 과정에서 최소절단을 쉽게 찾을 수 있었다.

NONNEGATIVITY OF REDUCIBLE SIGN IDEMPOTENT MATRICES

  • Park, Se-Won;Lee, Sang-Gu;Song, Seok-Zuk
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.665-671
    • /
    • 2000
  • A matrix whose entries consist of the symbols +.- and 0 is called a sign pattern matrix . In 1994 , Eschenbach gave a graph theoretic characterization of irreducible sign idempotent pattern matrices. In this paper, we give a characterization of reducible sign idempotent matrices. We show that reducible sign idempotent matrices, whose digraph is contained in an irreducible sign idempotent matrix, has all nonnegative entries up to equivalences. this extend the previous result.

BYPATHS IN LOCAL TOURNAMENTS

  • Guo, Yu-Bao
    • 대한수학회지
    • /
    • 제36권2호
    • /
    • pp.431-445
    • /
    • 1999
  • A digraph T is called a local tournament if for every vertex x of T, the set of in-neighbors as well as the set of out-neighbors of in-neighbors of x induce tournaments. Let x and y be two vertices of a 3-connected and arc-3-cyclic local tournament T with y x. We investigate the structure of T such that T contains no (x,y)-path of length k for some k with 3 k V(T) -1. Our result generalized those of [2] and [5] for tournaments.

  • PDF

Quantitative Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Joon;Ingoo Han
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1998년도 추계학술대회 논문집
    • /
    • pp.228-231
    • /
    • 1998
  • Artificial Intelligence literatures have recognized that stock market is a highly unstructured and complex domain so that it is difficult to find knowledge that belongs to that domain. This paper demonstrates that the proposed QCOM can derive global knowledge about stock market on the basis of a set of local knowledge and express it as a digraph representation. In addition, inference mechanism using quantitative causal reasoning can describe the qualitative and quantitative effects of exogenous variables on stock market.

  • PDF