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ABSTRACT. For a positive integer k, a k-rainbow dominating function of a digraph D is a
function f from the vertex set V(D) to the set of all subsets of the set {1,2,...,k} such
that for any vertex v € V(D) with f(v) = 0 the condition U, e n— () f(u) = {1,2,....k}
is fulfilled, where N~ (v) is the set of in-neighbors of v. A set {f1, fa,..., fa} of k-rainbow
dominating functions on D with the property that 3¢ |f;(v)| < k for each v € V(D),
is called a k-rainbow dominating family (of functions) on D. The maximum number of
functions in a k-rainbow dominating family on D is the k-rainbow domatic number of D,
denoted by d,,(D). In this paper we initiate the study of the k-rainbow domatic number
in digraphs, and we present some bounds for d, (D).

1. Introduction

Let D be a finite simple digraph with vertex set V(D) = V and arc set
A(D) = A. The order n = n(D) of a digraph D is the number of its vertices. We
write d* (v) = df;(v) for the outdegree of a vertex v and d~(v) = dp,(v) for its inde-
gree. The minimum and mazimum indegree and minimum and maximum outdegree
of D are denoted by 6~ = §~ (D), A~ = A=(D), 6T =67 (D) and AT = AT(D), re-
spectively. If uv is an arc of D, then v is an out-neighbor of v and w is an in-neighbor
of v, we also write u — v and say that u dominates v. For a vertex v of a digraph
D, we denote the set of in-neighbors and out-neighbors of v by N~ (v) = N, (v) and
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N*(v) = Nj(v), respectively. Let N~ [v] = N~ (v)U{v} and N*[v] = N*(v)U{v}.
For S C V(D), we define N*[S] = J,cg N*[v]. If X C V(D), then D[X] is the
subdigraph induced by X. If X C V(D) and v € V(D), then A(X,v) is the set of
arcs from X to v. The underlying graph of a digraph D is the graph G obtained by
replacing each arc of a digraph by a corresponding (undirected) edge. A digraph
is weakly connected if its underlying graph is connected. The weakly connected
components of a digraph are its maximal weakly connected subdigraphs. Consult
[12] for the notation and terminology which are not defined here. For a real-valued
function f: V(D) — R the weight of f is w(f) = > . f(v), and for S C V, we
define £(3) = 3,cq f(0), 50 w(f) = F(V).

A vertex v dominates all vertices in N*[v]. A subset S of vertices of D is a
dominating set if S dominates V(D). The domination number (D) is the minimum
cardinality of a dominating set of D. Domination in digraphs have been studied,
for example, in [6, 11, 14, 15, 19, 20].

For a positive integer k, a k-rainbow dominating function (kRDF) of a digraph
D is a function f from the vertex set V(D) to the set of all subsets of the set
{1,2,...,k} such that for any vertex v € V(D) with f(v) = @ the condition
UueN_(U) flw) = {1,2,...,k} is fulfilled. The weight of a kRDF f is the value
w(f) = Xyev(py | f()]. The k-rainbow domination number of a digraph D, de-
noted by (D), is the minimum weight of a kRDF of D. A ~,(D)-function is a
k-rainbow dominating function of D with weight ~,1(D). Note that ~,1(D) is the
classical domination number (D). The k-rainbow domination number of a digraph
was introduced by Amjadi, Bahremandpour, Sheikholeslami and Volkmann [1] and
has been studied in [2].

The definition of the k-rainbow domination number for undirected graphs was
introduced by Bresar, Henning and Rall [3] and has been studied by several authors
(see for example, [4, 5, 7, 8, 9, 18]).

A set {f1,f2,..., fa} of k-rainbow dominating functions of D such that
Z?:l |fi(v)] < k for each v € V(D), is called a k-rainbow dominating family (of
functions) on D. The maximum number of functions in a k-rainbow dominat-
ing family (kRD family) on D is the k-rainbow domatic number of D, denoted by
dri(D). The case k = 1 was defined and investigated by Zelinka [20] in 1984 as the
outside-semidomatic number d™ (D) = d,1(D).

The k-rainbow domatic number is well-defined and

(1.1) dri(D) > k

for all digraphs D, since the set consisting of the function f; : V(D) —
P({1,2,...,k}) defined by f;(v) = {i} for each v € V(D) and each i € {1,2,...,k},
forms a kRD family on D.

The definition of the k-rainbow domatic number for undirected graphs was
given by Sheikholeslami and Volkmann [17] and has been studied by several authors
(10, 16].

Our purpose in this paper is to initiate the study of the k-rainbow domatic
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number in digraphs. We start with some bounds on the k-rainbow domination
number, and then we study basic properties for the k-rainbow domatic number of
a digraph. In addition, we present some Nordhaus-Gaddum type results on the
k-rainbow domatic number.

2. Bounds on the k-Rainbow Domination Number
In [1] the following bounds on the k-rainbow domination number were proved.
Proposition A. ([1]) Let k > 1 be an integer. If D is a digraph of order n, then
min{k,n} < vx(D) < n.
Proposition B. ([1]) If k > 1 is an integer, and D is a digraph of order n, then
k(D) <n—AT(D) +k— 1.

Proposition 1. Let k be a positive integer. If D is a digraph of order n with the
property that max{AY(D),A~(D)} >k, then v.1x(D) <n — 1.

Proof. If AT(D) > k, then Proposition B implies that v, (D) < n—AT(D)+k—1 <
n— 1.

Assume next that A= (D) > k. Let d~(v) = A~ (D), and let wy,wy,...,wy be
k in-neighbors of v. Define the function f : V(D) — P({1,2,...,k}) by f(w;) = {i}
for1 <i <k, f(v) =0and f(x) = {1} otherwise. Then f is a k-rainbow dominating
function of weight w(f) =n — 1 and thus v,.,(D) <n — 1. O

Corollary 2. Let k > 1 be an integer. If D is a digraph of order n such that
V(D) = n, then max{AT(D),A™ (D)} <k —1.

For 1 < k < 2, we show that the converse of Corollary 2 is valid.

Proposition 3. Let k > 1 be an integer such that k < 2, and let D be a digraph of
order n. If max{A*(D),A™ (D)} <k —1, then v.1x(D) = n.

Proof. If k =1 and max{A*(D),A™ (D)} < k—1=0, then D is the empty digraph
and hence 1 (D) = v(D) = n.

Now let k£ = 2. If max{A*(D),A™ (D)} < k—1 =1, then the weakly compo-
nents of D are directed paths or directed cycles and therefore ~,.2(D) = n. O

The following example will demonstrate that Proposition 3 is not valid for k& > 3
in general.

Example 4. Let £ > 3 be an integer. Define the digraph H by the vertex set
u,v and x1,T9,...,Tr_1 such that v and v dominate x; for 1 < ¢ < k — 1. Then
AY(H) = k-1 and A~(H) = 2 and therefore max{A*(H),A™(H)} < k — 1.
Now define the function f : V(H) — P({1,2,...,k}) by f(u) = {1,2,...,k — 1},
f(v) = {k} and f(z;) =@ for 1 <i < k—1. Then f is a k-rainbow dominating
function on H of weight w(f) = k and thus v, (H) < k =n(H) — 1.
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Theorem 5. Let k > 1 be an integer, and let D be a digraph of order n > k.
Then v, (D) = k if and only if n = k or n > k and there exists a set A =
{v1,v2,...,0:} C V(D) with t <k such V(D) — A C N*(v;) for 1 <i<t.

Proof. According to Proposition A, we note that v, (D) > k. If n = k, then obvi-
ously v,£(D) = k. Now let n > k. Define the function f: V(D) — P({1,2,...,k})
by f(v;)) ={i} for 1 <i<t—1, f(v;) = {t,t +1,...,k} and f(z) = 0 otherwise.
Then f is a k-rainbow dominating function on D of weight w(f) = k and thus
Yk (D) < k and so vy.,(D) = k.

Conversely, assume that v, (D) = k. Let f be a ~,.(D)-function, and let Vj =
{v:|f(w)] =0} If Vg =0, then n =k. If V # 0, then let v € V5. By definition,
we have U, ecn- () f(u) ={1,2,...,k}. Now let vy, v2,..., v, € N7 (v) all vertices
in N~ (v) with the property that |f(v;)] # 0 for 1 < ¢ < ¢. Then the condition
Yek(D) = k implies that S0_, |f(vi)] = k, t < k and V(D) — {v1,v2,...,v:} C
N*(v;) for each i € {1,2,...,t}. O

Now we prove a lower bound on the k-rainbow domination number in terms of
order and maximum outdegree.

Theorem 6. Let k > 1 be an integer. If D is a digraph of order n, then

D)= | g

Proof. Let f be a v, (D)-function, and let V; = {v : |f(v)| =i} for i =0,1,... k.
Then v, (D) = [Vi| +2|Va| + ... + k|Vk| and n = |Vo| + [Vi| + ... + |Vi|. Let
Ay = (V(D) — Vo, Vo) be the set of arcs from V(D) — V; to Vp. Since f is a
~rk(D)-function, we obtain

(2.1)

k|Vo| < > |f ()] < AT(D)(|Vi|+2[Va|+. . .+k[Vi]) = v4(D)AT(D).
zy€Ap, z€V(D)-Vy

Now it follows from (2.1) that

(AT(D) + k)yer (D) = AT (D)4 (D) + k(D)

> kVol + (V] +2[Va| + ... + K| Vi])

=k(|Vo| + Vil + ...+ Vi) + E(Va| +2|Va| + ...+ (k — 1)|V&])
= kn 4 E(|Va| 4+ 2|Va| + ... + (k= 1)|Vi])

> kn,

and this leads to the desired bound. O

The case k = 1 of Theorem 6 can be found in [13] as Theorem 15.57, and the
case k = 2 of this bound was proved in [1].
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3. Properties of the k-Rainbow Domatic Number

In this section we mainly present basic properties of d,;(D) and bounds on the
k-rainbow domatic number of a graph.

Theorem 7. If D is a digraph of order n, then
'YTk(D) . drk(D) S kn.

Moreover, if v.1(D) - dpx (D) = kn, then for each kRD family {f1, fa,..., fa} on D
with d = d. (D), each function f; is a v (D)-function and Zle |fi(v)| =k for all
v e V(D).

Proof. Let {f1, fa,..., fa} be a kRD family on D such that d = d,;(D). Then

d d
d-yr(D) = Y (D) <> D |filw)]
=1

i=1 veV (D)
d
= > Yl > k=kn
veV(D) i=1 veV(D)

If (D) - dri(D) = kn, then the two inequalities occurring in the proof be-
come equalities. Hence for the kRD family {f1, fo,..., fa} on D and for each
i D pev(py |fi(v)] = 7ew(D). Thus each function f; is a v,4(D)-function, and

S | fi(w)| = k for all v € V(D). O
Corollary 8. If k is a positive integer, and D is a digraph of order n > k, then

Proof. Since n > k, Proposition A leads to .
Theorem 7 that

—~

D) > k. Therefore it follows from

kn
Yrk (D)

drk(D) < < =n.

ok

O

Corollary 9. If k is a positive integer, and D is isomorphic to the complete digraph
K} of order n >k, then d,,(D) = n.

Proof. In view of Corollary 8, we have d,;(D) < n. If {v1,v,...,v,} is the vertex
set of D then we define the function f; : V(D) — P({1,2,...,k}) by fi(v;) =
{1,2,...,k} for i = j and f;(v;) = 0 for ¢ # j, where 4,5 € {1,2,...,n}. Then
{f1, f2,- -, fn} is a kRD family on D and thus d,;(D) = n. O

Theorem 10. If D is a digraph of order n > k, then

Yo (D) + dri(D) < n+ k.
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Proof. Applying Theorem 7, we obtain

kn
drk(D)

Note that d,x(D) > k, by inequality (1.1), and that Corollary 8 implies that
drr(D) < n. Using these inequalities, and the fact that the function g(z) =
x + (kn)/x is decreasing for k < x < Vkn and increasing for vVikn < z < n,
we obtain

k k
rYT‘k(D)+dT‘k(D) Smax{:+k7n+n} :TL+]€,
n
and this is the desired bound. O

If D is isomorphic to the complete digraph K of order n > k, then 7,1(D) = k
and d,(D) = n by Corollary 9. Thus v, (K}) - drp(K}F) = nk and v, (K}) +
dri(K}) = n+ k when n > k. This example shows that Theorems 7 and 10 are
sharp.

Corollary 11. Let k > 1 be an integer, and let D be a digraph of order n > k. If
Yrk(D) = n, then d (D) = k.

Proof. Inequality (1.1) shows that d,;(D) > k. Furthermore, it follows by Theorem
7 that

kn kn
di(D) < _
VD)< D) T

and therefore d,r(D) = k. O

=k

Theorem 12. For every digraph D,

Proof. Let {f1, fa,..., fa} be a kRD family on D such that d = d,,(D), and let
v be a vertex of minimum indegree 6~ (D). Since >, n-p, |fi(w)| = 1 for all
i€{l,2,....d} and }_ N, [ fi(u)| <k for at most k indices i € {1,2,...,d}, we
obtain

d
Z Z | fi(w)]

=1 ueN~[v]
d

= > > i)
u€N~[v] i=1

< Y k=k(E(D)+1),

uw€EN ~ [v]

kd — k(k — 1)

IN

and this leads to the desired bound. O
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The special case k = 1 of Theorem 12 can be found in [20].

To prove sharpness of Theorem 12, let p > 2 be an integer, and let D; be a
copy of the complete digraph K7, ., with vertex set V(D;) = {v},v5, ..., v} 1}
for 1 <i < p. Now let D be the digraph obtained from (J!_, D; by adding a new
vertex v and joining v to each v} by the arcs vv] and vjv. Define the k-rainbow
dominating functions f1, fa,..., fp+x as follows: for 1 <i<pand1<s<k

fil) ={1,... k}, filvl ) = {1,...,k}if j € {1,...,p}\{i} and f(2) = 0 otherwise,

Fors(0) = {1}, fors(Whyorr) = {1,...,k}if j € {1,...,p} and f(z) = 0 otherwise.

It is easy to see that f; is a k-rainbow dominating function on D for each ¢ and
{f1, f2s- .., fptk} is a k-rainbow dominating family on D. Since 6~ (D) = p, we
have d,,(D) =6 (G) + k.

4. Nordhaus-Gaddum Type Results

The complement D of a digraph D is the digraph with vertex set V(D) such
that for any two distinct vertices u and v the arc uv belongs to D if and only if
uv does not belong to D. A digraph D is in-reqular when 6~ (D) = A~ (D) and
r-regular when 6~ (D) = A~ (D) = §7(D) = AT(D) = r. As an application of (1.1)
and Theorem 12, we will prove our first Nordhaus-Gaddum type inequality.

Theorem 13. For every digraph D of order n,

2k < dyp(D) + dyie(D) < m+ 2k — 1.

If dvi, (D) + dpk (D) = n+ 2k — 1, then D is in-regular.

Proof. Using (1.1), the inequality 2k < d,(D) + drr(D) is immediate.

Since 6~ (D) =n—1— A~ (D), it follows from Theorem 12 that

drk(D) +di(D) < (67(D)+ k) + (67 (D) + k)
= (0 D)+k)+(n—A"(D)—-1+k)
< n+4+2k-1

and this is the second bound. In addition, if D is not in-regular, then A~ (D) —
0= (D) > 1, and the inequality chain above leads to the better bound d,(D) +

drk(D) < n+ 2k — 2. This completes the proof. O

Corollary 9 implies that d,;(K}) = n and hence d,,(K}) + d..(K?) = n + 1.
Consequently, the upper bound in Theorem 13 is sharp for £ = 1. The next result
gives an upper bound for the k-rainbow domatic number of some special regular
digraphs.
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Theorem 14. Let D be an r-regular digraph of order n. If D has a v, (D)-function
f such that Vo UVaU UV £ or Vo =V3 =--- =V, =0 and k|Vy| < r|V1],
where V; = {v € V(D): |f(v)| =i}, then

drk(D) § r+k—1.
Proof. Let f be a v, (D)-function, and let V; = {v : |f(v)| =i} for i =0,1,... k.
Then (D) = |Vi| 4+ 2|Va| + - - - 4+ k|Vi| and n = |Vy| + |Vi| + - - - + |Vk]|. Following
the proof of Theorem 6, we obtain

(4.1) (r+k)yr(D) = kn + k(|Va| + 2[Vs| + -+ + (K = 1)[Vi|) = kn.

Let {f1, f2,.-., fa} be a kRD family of D such that d = d.,(D). We observe
that

42) D w(f) Z RCIENS Zm W< Y k=kn

i=1 i=1 veV (D) veV (D) i=1 veEV (D)

U

Suppose to the contrary that d > r+ k. If Vo UV U---U V) # 0, then (4.1)
shows that v, (D) > (kn+ k)/(r + k). Tt follows that

d kn + k kn +k
Zw(fi)z;m(D)Zdij w Z(T+k)<r:k > =kn+k>kn,

i=1

a contradiction to (4.2). If Vo = V3 = -+ = V;, = 0 and k|Vy| < r|V4|, then
Yk (D) = |V4| and n = |Vp| + |V4] and thus

(r + E)yre(D) = k|Vi| + r|Vi| > E|Vi| + k| Vo] = kn.

This implies that v,+(G) > kn/(r + k), and we obtain the following contradiction
o (4.2)

d d
kn
> w(fi) =D k(D) > (r+k) (r+k> = kn
=1 =1
Therefore d < r + k — 1, and the proof is complete. O

Now we improve the upper bound given in Theorem 13 for regular digraphs and
k> 2.

Theorem 15. If k > 2 is an integer, and D is an r-regular digraph of order n,
then
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Proof. Since D is r-regular, we observe that D is (n—r—1)-regular. Assume that D
has a ,(D)-function f such that Vo UVsU--- UV #Dor Vo=Va=---=V, =10
and k|Vy| < r|Vi|, where V; = {v € V(D): |f(v)| = i¢}. Then we deduce from
Theorem 14 that d,x(D) < r + k — 1. Using Theorem 12, we obtain the desired
result as follows

d(D)+d (D)< (r+k—1)+(n—r—1+k)=n+2k—2.

It remains the case that every v, (D)-function f of D fulfills Vo = V3 =--- =
Vi, = 0 and k|Vo| = r|V4|, where V; = {v € V(D): |f(v)| = i}. Note that n =
[Vo| +|Vi|. Furthermore, |Vp| > 1 and thus |Vi| > k. Since D is (n —r — 1)-regular,
it follows that r > (n —1)/2 or n —r — 1 > (n — 1)/2. We assume, without loss of
generality, that » > (n —1)/2.

If |V4| > 2k, then k|Vo| = r|V4| > 2kr and thus |Vp| > 2r. This leads to the

contradiction
n= Vol +|Vi| > 2r +2k >n—1+2k.

In the case k + 1 < [V4| < 2k — 1, we define Vi = {v: f(v) = {i}} for i €
{1,2,...,k}. Because of |Vi| < 2k — 1, we observe that |V{| = 1 for at least one
index i € {1,2,...,k}. We assume, without loss of generality, that |V;!| = 1. Since
each vertex of Vj has an in-neighbor in Vi!, we deduce that |Vy| < r. This implies
that

E|Vo| < kr <r|V4],

a contradiction to the assumption k|Vy| = r|V4].
If [Vi| = k, then |Vg| = r and so n = r+k. Hence n—r —1=k—1. Since the k
vertices of V1 induce a complete digraph of order £ in D, we deduce from Corollary

9 that d,x(D) < k. Now Theorem 12 implies that

drk(D)+dp(D) < (r+k)+k=n+k<n+2k-—2.

Since we have discussed all possible cases, the proof is complete. O

The complete digraph K demonstrates that Theorem 15 does not hold for
k = 1. However, we propose the following conjecture.

Conjecture. If k£ > 2 is an integer, and D is a digraph of order n, then

drk(D) + drk(D) <n+42k-2.
Corollary 16. If k > 1 is an integer, and D is a digraph of order n, then

(n+ 2k —1)2

drk(D) ' drk(ﬁ) < 4
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Proof. Tt follows from Theorem 13 that

(n+2k—1)% > (ds(D)+ do(D))?
= (dw(D) = di(D))? + 4dypi(D) - dyie(D)
> 4dyi(D) - dri(D),
and this leads to the desired bound. O

5. Cartesian Product and Strong Product of Directed Cycles

Let D; = (V4, A1) and Dy = (Va, As) be two digraphs which have disjoint vertex
sets V7 and V5 and disjoint arc sets A; and Ao, respectively. The Cartesian product
D10D; is the digraph with vertex set V; x V5 and for any two vertices (z1,z2) and
(y1,y2) of D10Dy, (x1,x2)(y1,y2) € A(D10Ds3) if one of the following holds:

(a) =1 =y and @Yz € A(Ds);
(b) T1Y1 € A(Dl) and xo = Y2.

The strong product D; ® D5 is the digraph obtained from Di[0Dy by adding the
following arcs:

(c) z1y1 € A(Dq) and x2y2 € A(D>).
The proof of the following results can be found in [1].

Proposition C. If m = 2r and n = 2s for some positive integers r, s, then

mn
77'2(C’mDCn) - 77'2(0771 & Cn) - 7
Proposition D. Forn > 2, v,9(C30C,,) = 2n.
Proposition E. If n is odd, then v2(C20C,) =n+ 1.

Proposition F. If m = 4r and n = 2s + 1 for some positive integers r,s, then
")/TQ(Om X On) = %

Proposition 17. If m and n are even positive integers, then d,.o(C,,0C,) = 4.

Proof. Let m = 2r and n = 2s for some positive integers r,s. It follows from
Theorem 7 and Proposition C that d.2(C,,,0C,) < 4 and d.2(Cy, ® Cy,) < 4. Define

f1, f2,91,92 : V(D) — P({1,2}) by:

fi((2i = 1,25 — 1)) = {1}, foreach 1 < i < rand 1 < j < s, f1((24,24)) =
{2} foreach1 <i<rand1<j <sand fi(z) = 0 otherwise,
Fol(2i — 1,25 1)) = (2}, foreach 1< < rand1 <) < s fol(20,2)) =
{1} foreach1 <i<rand1<j <sand fa(z) = 0 otherwise,
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91((2i,25 — 1)) = {1}, foreach 1 < i < rand 1 < j < s5,¢91((2i — 1,25)) =
{2} foreach 1 <i<rand1<j<sandg;(z) =0 otherwise,
92((24,25 — 1)) = {2}, foreach 1 < i < r and 1 < j < s5,92((20 — 1,25)) =
{1} foreach 1 <i <rand 1< j < sand gs(z) =0 otherwise.

It is easy to see that {fi, f2, 91,92} is a 2RD family of C,,00C,, and C,, ® Cy,
and so d.o(C,,0C,) = dpo(Cp, @ Cy) = 4. O

Proposition 18. Forn > 2, d.o(C50C,,) =3

Proof. By Theorem 7 and Proposition D, we have d,2(C50C,,) <3
If n = 0 (mod 3), then define g1, g2, g5 : V(C30C,) — P({1,2}) as follows:
91((1,3i+1)) = g1((2,3i+2)) = 92((3,3i43)) = {1}, 91 ((1,3i+3)) = g2((2, 3i+
1)) =g1((3,3i+2)) = {2} for 0 <i < 2 — 1 and g1 (x) = 0 otherwise,
92((1,3i+2)) = g2((2,3i+3)) = 92((3,3i+1)) = {1}, g2((1,3i+1)) = ga((2, 3i +
2)) =¢2((3,3i +3)) = {2} for 0 <i < Z — 1 and g2(z) = 0 otherwise,
93((1,3i +3)) = g3((2,3i + 1)) = g3((3,30 +2)) = {1},93((1,3i + 2)
93((2,3i 4+ 3)) = g3((3,3i +1)) = {2} for 0 <@ < 2 — 1 and g3(x ) 0 ot

wise.

n
3

) =
her-

If n =1 (mod 3), then define g1, g2, g3 : V(C50C,,) — P({1,2}) as follows:

91((3,n)) = {1},01((2,n)) = {2}, 91((1,3i + 1)) = 61 ((2,3i + 2)) = 1((3,3i +
3)) ={1},01((1,30+3)) = 91((2,3i +1)) = g1((3,3i +2)) = {2} for 0 < i < 254
and g1 (z) = 0 otherwise,

92((1,n)) = {1}, 92((3,n)) = {2}, 92((2,3i + 1)) = 92((3, 31 + 2))
3)) = {1}, 92((2,3i+3)) = g2((3,3i + 1)) = g2((1,3i+2)) = {2} for 0
and gs(z) = 0 otherwise,

93((2,n)) = {1},95((1,n)) = {2},95((3,3i + 1)) = g3((1,3i +2)) =
3)) = {1}, 93((3,3i+3)) = gs((1,3i+1)) = g3((2,3i +2)) = {2} for 0 <i < 251 —1
and g3(z) = 0 otherwise.

If n = 2 (mod 3), then define g1, g2, g5 : V(C30C,) — P({1,2}) as follows:
g1((1,m) = gu((Ln— 1)) = gu(Grm) = {1har((2n — 1)) = {2h,0:((1,3i +
D) = 01((2,31+2) = 0u((3.30 +3) = (1a((1,30 +3) = g1((2.31+ 1)) =
91((3,3i +2)) = {2} for 0 <i < 252 — 1 and g1(z) = 0 otherwise,
02((2,1) = 2((2m — 1) = ga((L,m)) = {1h02((3,m — 1)) = {2}, 6a((2,3i +
1) = g2((3,3i + 2)) = g2((1, i+ ) = {1102(2,30 + 3) = g2((3,30 +1)) =
92((1,3i 4+ 2)) = {2} for 0 < i < % — 1 and go(x) = () otherwise,
93((37n)) 3((3,71 -1)) = g3 ((2 ’I’L)) - {1} 93((1>n - 1)) = {2}793((373i +
31 +3)) = {1},05((3,30 + 3)) = g5((1,30 + 1)) =

93((2,3i+2)) = {2} for 0 < S 222 — 1 and g3(x) = 0 otherwise.
It is easy to see that {91,92793} is a 2RDF family of C500C,, and so
d,q(CgDCn) 2 3. Thus dTg(CgDCn) =3

O
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Proposition 19. If n is odd, then 2 < d,o(C20C,,) < 3.

Proof. By Theorem 7 and Proposition E, we have d,2(C20C,,) < 3. To prove lower
bound, define g1, g2 : V(CoOC,) — P({1,2}) by

g1((1,1)) = {1}, 1((1,20)) = {1} for 1 < i < 25% and ¢1((2,2i — 1)) = {2} for
1<i< ”T“ and g1 (z) = 0 otherwise, and

0((1,1)) = {2}, 2((1,20)) = {2} for 1 <7 < 51 and g5((2,2i — 1)) = {1} for
1< < % and gs(z) = 0 otherwise.

Clearly {g1, g2} is a 2RDF family of Co0C,, and so d.o(CoOC,,) > 2. O

Proposition 20. If m = 4r and n = 2s + 1 for some positive integers r,s, then
dr2(Cr, ® Cp) = 4.

Proof. By Theorem 7, we have d,2(Cp, ® Cy,) < 4. Define ¢1,92,93,94 : V(Cry ®
Cp) — P({1,2}) as follows:
g1((4i +1,1)) = {1}, 91((4i + 3,1)) = {2} for 0 < i <r — 1, g1 ((4i + 2,2j))

IN I

g1 (44 4,25+ 1)) = (111 (4 1 4,25)) = g2 (4 + 2,25 + 1)) = {2} for 0 < i
r—land1<j<s, and g(z) = 0 otherwise,

92((4i +1,1)) = {2}, 92((4i+ 3,1)) = {1} for 0 < i < r —1, g2((4i +2,2§)) =
0o((4i+4,2) + 1)) = {2}, 02((4i + 4,2))) = ga((4i +2,2] + 1)) = {1} for 0 < i <
r—land1<j<s, and go(z) = 0 otherwise,

g93((4i+2,1)) = {1},93((46 +4,1)) = {2} for 0 < i <r —1, g3((4i + 3,2j)) =
go((4i+1,2] + 1)) = (11, g5((4i + 1,27)) = go((4i +3,2] + 1)) = {2} for 0 < i <
r—1land1<j<s, and g3(z) = 0 otherwise,

g1((4i +2,1)) = {2}, 94((4i + 4,1)) = {1} for 0 < i < r — 1, ga((4i + 3,25)) =
9a((4i + 1,25 + 1)) = {2}, 9a((4i + 1,2j)) = ga((4i +3,2j +1)) = {1} for 0 <i <

r—1land1<j<s, and g4(x) = () otherwise.
It is easy to see that {g1, g2, g3, g4} is a 2RDF family of C,,, ® C), and so d2(Cyy,
Cn) > 4. Thus dyo(Cyy @ Cy) = 4.

O®

We conclude this paper with a problem.

Problem. Determine the exact value of d.o(C,,,0C),) and d.o(C,, ® C,,) for all m
and n.
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