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Abstract. For a positive integer k, a k-rainbow dominating function of a digraph D is a

function f from the vertex set V (D) to the set of all subsets of the set {1, 2, . . . , k} such

that for any vertex v ∈ V (D) with f(v) = ∅ the condition
⋃

u∈N−(v) f(u) = {1, 2, . . . , k}
is fulfilled, where N−(v) is the set of in-neighbors of v. A set {f1, f2, . . . , fd} of k-rainbow

dominating functions on D with the property that
∑d

i=1 |fi(v)| ≤ k for each v ∈ V (D),

is called a k-rainbow dominating family (of functions) on D. The maximum number of

functions in a k-rainbow dominating family on D is the k-rainbow domatic number of D,

denoted by drk(D). In this paper we initiate the study of the k-rainbow domatic number

in digraphs, and we present some bounds for drk(D).

1. Introduction

Let D be a finite simple digraph with vertex set V (D) = V and arc set
A(D) = A. The order n = n(D) of a digraph D is the number of its vertices. We
write d+(v) = d+

D(v) for the outdegree of a vertex v and d−(v) = d−D(v) for its inde-
gree. The minimum and maximum indegree and minimum and maximum outdegree
of D are denoted by δ− = δ−(D), ∆− = ∆−(D), δ+ = δ+(D) and ∆+ = ∆+(D), re-
spectively. If uv is an arc of D, then v is an out-neighbor of u and u is an in-neighbor
of v, we also write u → v and say that u dominates v. For a vertex v of a digraph
D, we denote the set of in-neighbors and out-neighbors of v by N−(v) = N−

D (v) and
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N+(v) = N+
D (v), respectively. Let N−[v] = N−(v)∪{v} and N+[v] = N+(v)∪{v}.

For S ⊆ V (D), we define N+[S] =
⋃

v∈S N+[v]. If X ⊆ V (D), then D[X] is the
subdigraph induced by X. If X ⊆ V (D) and v ∈ V (D), then A(X, v) is the set of
arcs from X to v. The underlying graph of a digraph D is the graph G obtained by
replacing each arc of a digraph by a corresponding (undirected) edge. A digraph
is weakly connected if its underlying graph is connected. The weakly connected
components of a digraph are its maximal weakly connected subdigraphs. Consult
[12] for the notation and terminology which are not defined here. For a real-valued
function f : V (D) −→ R the weight of f is w(f) =

∑
v∈V f(v), and for S ⊆ V , we

define f(S) =
∑

v∈S f(v), so w(f) = f(V ).
A vertex v dominates all vertices in N+[v]. A subset S of vertices of D is a

dominating set if S dominates V (D). The domination number γ(D) is the minimum
cardinality of a dominating set of D. Domination in digraphs have been studied,
for example, in [6, 11, 14, 15, 19, 20].

For a positive integer k, a k-rainbow dominating function (kRDF) of a digraph
D is a function f from the vertex set V (D) to the set of all subsets of the set
{1, 2, . . . , k} such that for any vertex v ∈ V (D) with f(v) = ∅ the condition⋃

u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a kRDF f is the value
ω(f) =

∑
v∈V (D) |f(v)|. The k-rainbow domination number of a digraph D, de-

noted by γrk(D), is the minimum weight of a kRDF of D. A γrk(D)-function is a
k-rainbow dominating function of D with weight γrk(D). Note that γr1(D) is the
classical domination number γ(D). The k-rainbow domination number of a digraph
was introduced by Amjadi, Bahremandpour, Sheikholeslami and Volkmann [1] and
has been studied in [2].

The definition of the k-rainbow domination number for undirected graphs was
introduced by Brešar, Henning and Rall [3] and has been studied by several authors
(see for example, [4, 5, 7, 8, 9, 18]).

A set {f1, f2, . . . , fd} of k-rainbow dominating functions of D such that∑d
i=1 |fi(v)| ≤ k for each v ∈ V (D), is called a k-rainbow dominating family (of

functions) on D. The maximum number of functions in a k-rainbow dominat-
ing family (kRD family) on D is the k-rainbow domatic number of D, denoted by
drk(D). The case k = 1 was defined and investigated by Zelinka [20] in 1984 as the
outside-semidomatic number d+(D) = dr1(D).

The k-rainbow domatic number is well-defined and

(1.1) drk(D) ≥ k

for all digraphs D, since the set consisting of the function fi : V (D) →
P({1, 2, . . . , k}) defined by fi(v) = {i} for each v ∈ V (D) and each i ∈ {1, 2, . . . , k},
forms a kRD family on D.

The definition of the k-rainbow domatic number for undirected graphs was
given by Sheikholeslami and Volkmann [17] and has been studied by several authors
[10, 16].

Our purpose in this paper is to initiate the study of the k-rainbow domatic
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number in digraphs. We start with some bounds on the k-rainbow domination
number, and then we study basic properties for the k-rainbow domatic number of
a digraph. In addition, we present some Nordhaus-Gaddum type results on the
k-rainbow domatic number.

2. Bounds on the k-Rainbow Domination Number

In [1] the following bounds on the k-rainbow domination number were proved.

Proposition A. ([1]) Let k ≥ 1 be an integer. If D is a digraph of order n, then

min{k, n} ≤ γrk(D) ≤ n.

Proposition B. ([1]) If k ≥ 1 is an integer, and D is a digraph of order n, then

γrk(D) ≤ n−∆+(D) + k − 1.

Proposition 1. Let k be a positive integer. If D is a digraph of order n with the
property that max{∆+(D),∆−(D)} ≥ k, then γrk(D) ≤ n− 1.

Proof. If ∆+(D) ≥ k, then Proposition B implies that γrk(D) ≤ n−∆+(D)+k−1 ≤
n− 1.

Assume next that ∆−(D) ≥ k. Let d−(v) = ∆−(D), and let w1, w1, . . . , wk be
k in-neighbors of v. Define the function f : V (D) → P({1, 2, . . . , k}) by f(wi) = {i}
for 1 ≤ i ≤ k, f(v) = ∅ and f(x) = {1} otherwise. Then f is a k-rainbow dominating
function of weight ω(f) = n− 1 and thus γrk(D) ≤ n− 1.

Corollary 2. Let k ≥ 1 be an integer. If D is a digraph of order n such that
γrk(D) = n, then max{∆+(D), ∆−(D)} ≤ k − 1.

For 1 ≤ k ≤ 2, we show that the converse of Corollary 2 is valid.

Proposition 3. Let k ≥ 1 be an integer such that k ≤ 2, and let D be a digraph of
order n. If max{∆+(D), ∆−(D)} ≤ k − 1, then γrk(D) = n.

Proof. If k = 1 and max{∆+(D),∆−(D)} ≤ k−1 = 0, then D is the empty digraph
and hence γr1(D) = γ(D) = n.

Now let k = 2. If max{∆+(D), ∆−(D)} ≤ k − 1 = 1, then the weakly compo-
nents of D are directed paths or directed cycles and therefore γr2(D) = n.

The following example will demonstrate that Proposition 3 is not valid for k ≥ 3
in general.

Example 4. Let k ≥ 3 be an integer. Define the digraph H by the vertex set
u, v and x1, x2, . . . , xk−1 such that u and v dominate xi for 1 ≤ i ≤ k − 1. Then
∆+(H) = k − 1 and ∆−(H) = 2 and therefore max{∆+(H), ∆−(H)} ≤ k − 1.
Now define the function f : V (H) → P({1, 2, . . . , k}) by f(u) = {1, 2, . . . , k − 1},
f(v) = {k} and f(xi) = ∅ for 1 ≤ i ≤ k − 1. Then f is a k-rainbow dominating
function on H of weight ω(f) = k and thus γrk(H) ≤ k = n(H)− 1.
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Theorem 5. Let k ≥ 1 be an integer, and let D be a digraph of order n ≥ k.
Then γrk(D) = k if and only if n = k or n > k and there exists a set A =
{v1, v2, . . . , vt} ⊂ V (D) with t ≤ k such V (D)−A ⊆ N+(vi) for 1 ≤ i ≤ t.

Proof. According to Proposition A, we note that γrk(D) ≥ k. If n = k, then obvi-
ously γrk(D) = k. Now let n > k. Define the function f : V (D) → P({1, 2, . . . , k})
by f(vi) = {i} for 1 ≤ i ≤ t − 1, f(vt) = {t, t + 1, . . . , k} and f(x) = ∅ otherwise.
Then f is a k-rainbow dominating function on D of weight ω(f) = k and thus
γrk(D) ≤ k and so γrk(D) = k.

Conversely, assume that γrk(D) = k. Let f be a γrk(D)-function, and let V0 =
{v : |f(v)| = 0}. If V0 = ∅, then n = k. If V0 6= ∅, then let v ∈ V0. By definition,
we have

⋃
u∈N−(v) f(u) = {1, 2, . . . , k}. Now let v1, v2, . . . , vt ∈ N−(v) all vertices

in N−(v) with the property that |f(vi)| 6= 0 for 1 ≤ i ≤ t. Then the condition
γrk(D) = k implies that

∑t
i=1 |f(vi)| = k, t ≤ k and V (D) − {v1, v2, . . . , vt} ⊆

N+(vi) for each i ∈ {1, 2, . . . , t}.

Now we prove a lower bound on the k-rainbow domination number in terms of
order and maximum outdegree.

Theorem 6. Let k ≥ 1 be an integer. If D is a digraph of order n, then

γrk(D) ≥
⌈

kn

∆+(D) + k

⌉
.

Proof. Let f be a γrk(D)-function, and let Vi = {v : |f(v)| = i} for i = 0, 1, . . . , k.
Then γrk(D) = |V1| + 2|V2| + . . . + k|Vk| and n = |V0| + |V1| + . . . + |Vk|. Let
A0 = (V (D) − V0, V0) be the set of arcs from V (D) − V0 to V0. Since f is a
γrk(D)-function, we obtain
(2.1)
k|V0| ≤

∑

xy∈A0, x∈V (D)−V0

|f(x)| ≤ ∆+(D)(|V1|+2|V2|+. . .+k|Vk|) = γrk(D)∆+(D).

Now it follows from (2.1) that

(∆+(D) + k)γrk(D) = ∆+(D)γrk(D) + kγrk(D)
≥ k|V0|+ k(|V1|+ 2|V2|+ . . . + k|Vk|)
= k(|V0|+ |V1|+ . . . + |Vk|) + k(|V2|+ 2|V3|+ . . . + (k − 1)|Vk|)
= kn + k(|V2|+ 2|V3|+ . . . + (k − 1)|Vk|)
≥ kn,

and this leads to the desired bound.

The case k = 1 of Theorem 6 can be found in [13] as Theorem 15.57, and the
case k = 2 of this bound was proved in [1].
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3. Properties of the k-Rainbow Domatic Number

In this section we mainly present basic properties of drk(D) and bounds on the
k-rainbow domatic number of a graph.

Theorem 7. If D is a digraph of order n, then

γrk(D) · drk(D) ≤ kn.

Moreover, if γrk(D) · drk(D) = kn, then for each kRD family {f1, f2, . . . , fd} on D

with d = drk(D), each function fi is a γrk(D)-function and
∑d

i=1 |fi(v)| = k for all
v ∈ V (D).

Proof. Let {f1, f2, . . . , fd} be a kRD family on D such that d = drk(D). Then

d · γrk(D) =
d∑

i=1

γrk(D) ≤
d∑

i=1

∑

v∈V (D)

|fi(v)|

=
∑

v∈V (D)

d∑

i=1

|fi(v)| ≤
∑

v∈V (D)

k = kn.

If γrk(D) · drk(D) = kn, then the two inequalities occurring in the proof be-
come equalities. Hence for the kRD family {f1, f2, . . . , fd} on D and for each
i,

∑
v∈V (D) |fi(v)| = γrk(D). Thus each function fi is a γrk(D)-function, and∑d

i=1 |fi(v)| = k for all v ∈ V (D).

Corollary 8. If k is a positive integer, and D is a digraph of order n ≥ k, then

drk(G) ≤ n.

Proof. Since n ≥ k, Proposition A leads to γrk(D) ≥ k. Therefore it follows from
Theorem 7 that

drk(D) ≤ kn

γrk(D)
≤ kn

k
= n.

Corollary 9. If k is a positive integer, and D is isomorphic to the complete digraph
K∗

n of order n ≥ k, then drk(D) = n.

Proof. In view of Corollary 8, we have drk(D) ≤ n. If {v1, v2, . . . , vn} is the vertex
set of D then we define the function fi : V (D) → P({1, 2, . . . , k}) by fi(vj) =
{1, 2, . . . , k} for i = j and fi(vj) = ∅ for i 6= j, where i, j ∈ {1, 2, . . . , n}. Then
{f1, f2, . . . , fn} is a kRD family on D and thus drk(D) = n.

Theorem 10. If D is a digraph of order n ≥ k, then

γrk(D) + drk(D) ≤ n + k.
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Proof. Applying Theorem 7, we obtain

γrk(D) + drk(D) ≤ kn

drk(D)
+ drk(D).

Note that drk(D) ≥ k, by inequality (1.1), and that Corollary 8 implies that
drk(D) ≤ n. Using these inequalities, and the fact that the function g(x) =
x + (kn)/x is decreasing for k ≤ x ≤

√
kn and increasing for

√
kn ≤ x ≤ n,

we obtain

γrk(D) + drk(D) ≤ max
{

kn

k
+ k,

kn

n
+ n

}
= n + k,

and this is the desired bound.

If D is isomorphic to the complete digraph K∗
n of order n ≥ k, then γrk(D) = k

and drk(D) = n by Corollary 9. Thus γrk(K∗
n) · drk(K∗

n) = nk and γrk(K∗
n) +

drk(K∗
n) = n + k when n ≥ k. This example shows that Theorems 7 and 10 are

sharp.

Corollary 11. Let k ≥ 1 be an integer, and let D be a digraph of order n ≥ k. If
γrk(D) = n, then drk(D) = k.

Proof. Inequality (1.1) shows that drk(D) ≥ k. Furthermore, it follows by Theorem
7 that

drk(D) ≤ kn

γrk(D)
=

kn

n
= k

and therefore drk(D) = k.

Theorem 12. For every digraph D,

drk(D) ≤ δ−(D) + k.

Proof. Let {f1, f2, . . . , fd} be a kRD family on D such that d = drk(D), and let
v be a vertex of minimum indegree δ−(D). Since

∑
u∈N−[v] |fi(u)| ≥ 1 for all

i ∈ {1, 2, . . . , d} and
∑

u∈N−[v] |fi(u)| < k for at most k indices i ∈ {1, 2, . . . , d}, we
obtain

kd− k(k − 1) ≤
d∑

i=1

∑

u∈N−[v]

|fi(u)|

=
∑

u∈N−[v]

d∑

i=1

|fi(u)|

≤
∑

u∈N−[v]

k = k(δ−(D) + 1),

and this leads to the desired bound.
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The special case k = 1 of Theorem 12 can be found in [20].

To prove sharpness of Theorem 12, let p ≥ 2 be an integer, and let Di be a
copy of the complete digraph K∗

p+k+1 with vertex set V (Di) = {vi
1, v

i
2, . . . , v

i
p+k+1}

for 1 ≤ i ≤ p. Now let D be the digraph obtained from
⋃p

i=1 Di by adding a new
vertex v and joining v to each vi

1 by the arcs vvi
1 and vi

1v. Define the k-rainbow
dominating functions f1, f2, . . . , fp+k as follows: for 1 ≤ i ≤ p and 1 ≤ s ≤ k

fi(vi
1) = {1, . . . , k}, fi(v

j
i+1) = {1, . . . , k} if j ∈ {1, . . . , p}\{i} and f(x) = ∅ otherwise,

fp+s(v) = {1}, fp+s(v
j
p+s+1) = {1, . . . , k} if j ∈ {1, . . . , p} and f(x) = ∅ otherwise.

It is easy to see that fi is a k-rainbow dominating function on D for each i and
{f1, f2, . . . , fp+k} is a k-rainbow dominating family on D. Since δ−(D) = p, we
have drk(D) = δ−(G) + k.

4. Nordhaus-Gaddum Type Results

The complement D of a digraph D is the digraph with vertex set V (D) such
that for any two distinct vertices u and v the arc uv belongs to D if and only if
uv does not belong to D. A digraph D is in-regular when δ−(D) = ∆−(D) and
r-regular when δ−(D) = ∆−(D) = δ+(D) = ∆+(D) = r. As an application of (1.1)
and Theorem 12, we will prove our first Nordhaus-Gaddum type inequality.

Theorem 13. For every digraph D of order n,

2k ≤ drk(D) + drk(D) ≤ n + 2k − 1.

If drk(D) + drk(D) = n + 2k − 1, then D is in-regular.

Proof. Using (1.1), the inequality 2k ≤ drk(D) + drk(D) is immediate.
Since δ−(D) = n− 1−∆−(D), it follows from Theorem 12 that

drk(D) + drk(D) ≤ (δ−(D) + k) + (δ−(D) + k)
= (δ−(D) + k) + (n−∆−(D)− 1 + k)
≤ n + 2k − 1

and this is the second bound. In addition, if D is not in-regular, then ∆−(D) −
δ−(D) ≥ 1, and the inequality chain above leads to the better bound drk(D) +
drk(D) ≤ n + 2k − 2. This completes the proof.

Corollary 9 implies that dr1(K∗
n) = n and hence drk(K∗

n) + drk(K∗
n) = n + 1.

Consequently, the upper bound in Theorem 13 is sharp for k = 1. The next result
gives an upper bound for the k-rainbow domatic number of some special regular
digraphs.



76 S. M. Sheikholeslami and L. Volkmann

Theorem 14. Let D be an r-regular digraph of order n. If D has a γrk(D)-function
f such that V2 ∪ V3 ∪ · · · ∪ Vk 6= ∅ or V2 = V3 = · · · = Vk = ∅ and k|V0| < r|V1|,
where Vi = {v ∈ V (D) : |f(v)| = i}, then

drk(D) ≤ r + k − 1.

Proof. Let f be a γrk(D)-function, and let Vi = {v : |f(v)| = i} for i = 0, 1, . . . , k.
Then γrk(D) = |V1|+ 2|V2|+ · · ·+ k|Vk| and n = |V0|+ |V1|+ · · ·+ |Vk|. Following
the proof of Theorem 6, we obtain

(4.1) (r + k)γrk(D) ≥ kn + k(|V2|+ 2|V3|+ · · ·+ (k − 1)|Vk|) ≥ kn.

Let {f1, f2, . . . , fd} be a kRD family of D such that d = drk(D). We observe
that

(4.2)
d∑

i=1

ω(fi) =
d∑

i=1

∑

v∈V (D)

|fi(v)| =
∑

v∈V (D)

d∑

i=1

|fi(v)| ≤
∑

v∈V (D)

k = kn.

Suppose to the contrary that d ≥ r + k. If V2 ∪ V3 ∪ · · · ∪ Vk 6= ∅, then (4.1)
shows that γrk(D) ≥ (kn + k)/(r + k). It follows that

d∑

i=1

ω(fi) ≥
d∑

i=1

γrk(D) ≥ d

⌈
kn + k

r + k

⌉
≥ (r + k)

(
kn + k

r + k

)
= kn + k > kn,

a contradiction to (4.2). If V2 = V3 = · · · = Vk = ∅ and k|V0| < r|V1|, then
γrk(D) = |V1| and n = |V0|+ |V1| and thus

(r + k)γrk(D) = k|V1|+ r|V1| > k|V1|+ k|V0| = kn.

This implies that γrk(G) > kn/(r + k), and we obtain the following contradiction
to (4.2)

d∑

i=1

ω(fi) ≥
d∑

i=1

γrk(D) > (r + k)
(

kn

r + k

)
= kn.

Therefore d ≤ r + k − 1, and the proof is complete.

Now we improve the upper bound given in Theorem 13 for regular digraphs and
k ≥ 2.

Theorem 15. If k ≥ 2 is an integer, and D is an r-regular digraph of order n,
then

drk(D) + drk(D) ≤ n + 2k − 2.
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Proof. Since D is r-regular, we observe that D is (n−r−1)-regular. Assume that D
has a γrk(D)-function f such that V2 ∪ V3 ∪ · · · ∪ Vk 6= ∅ or V2 = V3 = · · · = Vk = ∅
and k|V0| < r|V1|, where Vi = {v ∈ V (D) : |f(v)| = i}. Then we deduce from
Theorem 14 that drk(D) ≤ r + k − 1. Using Theorem 12, we obtain the desired
result as follows

drk(D) + drk(D) ≤ (r + k − 1) + (n− r − 1 + k) = n + 2k − 2.

It remains the case that every γrk(D)-function f of D fulfills V2 = V3 = · · · =
Vk = ∅ and k|V0| = r|V1|, where Vi = {v ∈ V (D) : |f(v)| = i}. Note that n =
|V0|+ |V1|. Furthermore, |V0| ≥ 1 and thus |V1| ≥ k. Since D is (n− r− 1)-regular,
it follows that r ≥ (n− 1)/2 or n− r − 1 ≥ (n− 1)/2. We assume, without loss of
generality, that r ≥ (n− 1)/2.

If |V1| ≥ 2k, then k|V0| = r|V1| ≥ 2kr and thus |V0| ≥ 2r. This leads to the
contradiction

n = |V0|+ |V1| ≥ 2r + 2k ≥ n− 1 + 2k.

In the case k + 1 ≤ |V1| ≤ 2k − 1, we define V i
1 = {v : f(v) = {i}} for i ∈

{1, 2, . . . , k}. Because of |V1| ≤ 2k − 1, we observe that |V i
1 | = 1 for at least one

index i ∈ {1, 2, . . . , k}. We assume, without loss of generality, that |V 1
1 | = 1. Since

each vertex of V0 has an in-neighbor in V 1
1 , we deduce that |V0| ≤ r. This implies

that
k|V0| ≤ kr < r|V1|,

a contradiction to the assumption k|V0| = r|V1|.
If |V1| = k, then |V0| = r and so n = r +k. Hence n− r−1 = k−1. Since the k

vertices of V1 induce a complete digraph of order k in D, we deduce from Corollary
9 that drk(D) ≤ k. Now Theorem 12 implies that

drk(D) + drk(D) ≤ (r + k) + k = n + k ≤ n + 2k − 2.

Since we have discussed all possible cases, the proof is complete.

The complete digraph K∗
n demonstrates that Theorem 15 does not hold for

k = 1. However, we propose the following conjecture.

Conjecture. If k ≥ 2 is an integer, and D is a digraph of order n, then

drk(D) + drk(D) ≤ n + 2k − 2.

Corollary 16. If k ≥ 1 is an integer, and D is a digraph of order n, then

drk(D) · drk(D) ≤ (n + 2k − 1)2

4
.
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Proof. It follows from Theorem 13 that

(n + 2k − 1)2 ≥ (drk(D) + drk(D))2

= (drk(D)− drk(D))2 + 4drk(D) · drk(D)
≥ 4drk(D) · drk(D),

and this leads to the desired bound.

5. Cartesian Product and Strong Product of Directed Cycles

Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs which have disjoint vertex
sets V1 and V2 and disjoint arc sets A1 and A2, respectively. The Cartesian product
D1¤D2 is the digraph with vertex set V1×V2 and for any two vertices (x1, x2) and
(y1, y2) of D1¤D2, (x1, x2)(y1, y2) ∈ A(D1¤D2) if one of the following holds:

(a) x1 = y1 and x2y2 ∈ A(D2);

(b) x1y1 ∈ A(D1) and x2 = y2.

The strong product D1 ⊗ D2 is the digraph obtained from D1¤D2 by adding the
following arcs:

(c) x1y1 ∈ A(D1) and x2y2 ∈ A(D2).

The proof of the following results can be found in [1].

Proposition C. If m = 2r and n = 2s for some positive integers r, s, then

γr2(Cm¤Cn) = γr2(Cm ⊗ Cn) =
mn

2
.

Proposition D. For n ≥ 2, γr2(C3¤Cn) = 2n.

Proposition E. If n is odd, then γr2(C2¤Cn) = n + 1.

Proposition F. If m = 4r and n = 2s + 1 for some positive integers r, s, then
γr2(Cm ⊗ Cn) = mn

2 .

Proposition 17. If m and n are even positive integers, then dr2(Cm¤Cn) = 4.

Proof. Let m = 2r and n = 2s for some positive integers r, s. It follows from
Theorem 7 and Proposition C that dr2(Cm¤Cn) ≤ 4 and dr2(Cm⊗Cn) ≤ 4. Define
f1, f2, g1, g2 : V (D) → P({1, 2}) by:
f1((2i − 1, 2j − 1)) = {1}, for each 1 ≤ i ≤ r and 1 ≤ j ≤ s, f1((2i, 2j)) =
{2} for each 1 ≤ i ≤ r and 1 ≤ j ≤ s and f1(x) = ∅ otherwise,
f2((2i − 1, 2j − 1)) = {2}, for each 1 ≤ i ≤ r and 1 ≤ j ≤ s, f2((2i, 2j)) =
{1} for each 1 ≤ i ≤ r and 1 ≤ j ≤ s and f2(x) = ∅ otherwise,
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g1((2i, 2j − 1)) = {1}, for each 1 ≤ i ≤ r and 1 ≤ j ≤ s, g1((2i − 1, 2j)) =
{2} for each 1 ≤ i ≤ r and 1 ≤ j ≤ s and g1(x) = ∅ otherwise,
g2((2i, 2j − 1)) = {2}, for each 1 ≤ i ≤ r and 1 ≤ j ≤ s, g2((2i − 1, 2j)) =
{1} for each 1 ≤ i ≤ r and 1 ≤ j ≤ s and g2(x) = ∅ otherwise.

It is easy to see that {f1, f2, g1, g2} is a 2RD family of Cm¤Cn and Cm ⊗ Cn,
and so dr2(Cm¤Cn) = dr2(Cm ⊗ Cn) = 4.

Proposition 18. For n ≥ 2, dr2(C3¤Cn) = 3.

Proof. By Theorem 7 and Proposition D, we have dr2(C3¤Cn) ≤ 3.
If n ≡ 0 (mod 3), then define g1, g2, g3 : V (C3¤Cn) → P({1, 2}) as follows:
g1((1, 3i+1)) = g1((2, 3i+2)) = g1((3, 3i+3)) = {1}, g1((1, 3i+3)) = g2((2, 3i+

1)) = g1((3, 3i + 2)) = {2} for 0 ≤ i ≤ n
3 − 1 and g1(x) = ∅ otherwise,

g2((1, 3i+2)) = g2((2, 3i+3)) = g2((3, 3i+1)) = {1}, g2((1, 3i+1)) = g2((2, 3i+
2)) = g2((3, 3i + 3)) = {2} for 0 ≤ i ≤ n

3 − 1 and g2(x) = ∅ otherwise,
g3((1, 3i + 3)) = g3((2, 3i + 1)) = g3((3, 3i + 2)) = {1}, g3((1, 3i + 2)) =

g3((2, 3i + 3)) = g3((3, 3i + 1)) = {2} for 0 ≤ i ≤ n
3 − 1 and g3(x) = ∅ other-

wise.

If n ≡ 1 (mod 3), then define g1, g2, g3 : V (C3¤Cn) → P({1, 2}) as follows:
g1((3, n)) = {1}, g1((2, n)) = {2}, g1((1, 3i + 1)) = g1((2, 3i + 2)) = g1((3, 3i +

3)) = {1}, g1((1, 3i+3)) = g1((2, 3i+1)) = g1((3, 3i+2)) = {2} for 0 ≤ i ≤ n−1
3 −1

and g1(x) = ∅ otherwise,
g2((1, n)) = {1}, g2((3, n)) = {2}, g2((2, 3i + 1)) = g2((3, 3i + 2)) = g2((1, 3i +

3)) = {1}, g2((2, 3i+3)) = g2((3, 3i+1)) = g2((1, 3i+2)) = {2} for 0 ≤ i ≤ n−1
3 −1

and g2(x) = ∅ otherwise,
g3((2, n)) = {1}, g3((1, n)) = {2}, g3((3, 3i + 1)) = g3((1, 3i + 2)) = g3((2, 3i +

3)) = {1}, g3((3, 3i+3)) = g3((1, 3i+1)) = g3((2, 3i+2)) = {2} for 0 ≤ i ≤ n−1
3 −1

and g3(x) = ∅ otherwise.

If n ≡ 2 (mod 3), then define g1, g2, g3 : V (C3¤Cn) → P({1, 2}) as follows:
g1((1, n)) = g1((1, n − 1)) = g1((3, n)) = {1}, g1((2, n − 1)) = {2}, g1((1, 3i +

1)) = g1((2, 3i + 2)) = g1((3, 3i + 3)) = {1}, g1((1, 3i + 3)) = g1((2, 3i + 1)) =
g1((3, 3i + 2)) = {2} for 0 ≤ i ≤ n−2

3 − 1 and g1(x) = ∅ otherwise,
g2((2, n)) = g2((2, n − 1)) = g2((1, n)) = {1}, g2((3, n − 1)) = {2}, g2((2, 3i +

1)) = g2((3, 3i + 2)) = g2((1, 3i + 3)) = {1}, g2((2, 3i + 3)) = g2((3, 3i + 1)) =
g2((1, 3i + 2)) = {2} for 0 ≤ i ≤ n−2

3 − 1 and g2(x) = ∅ otherwise,
g3((3, n)) = g3((3, n − 1)) = g3((2, n)) = {1}, g3((1, n − 1)) = {2}, g3((3, 3i +

1)) = g3((1, 3i + 2)) = g3((2, 3i + 3)) = {1}, g3((3, 3i + 3)) = g3((1, 3i + 1)) =
g3((2, 3i + 2)) = {2} for 0 ≤ i ≤ n−2

3 − 1 and g3(x) = ∅ otherwise.
It is easy to see that {g1, g2, g3} is a 2RDF family of C3¤Cn and so

dr2(C3¤Cn) ≥ 3. Thus dr2(C3¤Cn) = 3.
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Proposition 19. If n is odd, then 2 ≤ dr2(C2¤Cn) ≤ 3.

Proof. By Theorem 7 and Proposition E, we have dr2(C2¤Cn) ≤ 3. To prove lower
bound, define g1, g2 : V (C2¤Cn) → P({1, 2}) by

g1((1, 1)) = {1}, g1((1, 2i)) = {1} for 1 ≤ i ≤ n−1
2 and g1((2, 2i− 1)) = {2} for

1 ≤ i ≤ n+1
2 and g1(x) = ∅ otherwise, and

g2((1, 1)) = {2}, g2((1, 2i)) = {2} for 1 ≤ i ≤ n−1
2 and g2((2, 2i− 1)) = {1} for

1 ≤ i ≤ n+1
2 and g2(x) = ∅ otherwise.

Clearly {g1, g2} is a 2RDF family of C2¤Cn and so dr2(C2¤Cn) ≥ 2.

Proposition 20. If m = 4r and n = 2s + 1 for some positive integers r, s, then
dr2(Cm ⊗ Cn) = 4.

Proof. By Theorem 7, we have dr2(Cm ⊗ Cn) ≤ 4. Define g1, g2, g3, g4 : V (Cm ⊗
Cn) → P({1, 2}) as follows:

g1((4i + 1, 1)) = {1}, g1((4i + 3, 1)) = {2} for 0 ≤ i ≤ r − 1, g1((4i + 2, 2j)) =
g1((4i + 4, 2j + 1)) = {1}, g1((4i + 4, 2j)) = g1((4i + 2, 2j + 1)) = {2} for 0 ≤ i ≤
r − 1 and 1 ≤ j ≤ s, and g1(x) = ∅ otherwise,

g2((4i + 1, 1)) = {2}, g2((4i + 3, 1)) = {1} for 0 ≤ i ≤ r − 1, g2((4i + 2, 2j)) =
g2((4i + 4, 2j + 1)) = {2}, g2((4i + 4, 2j)) = g2((4i + 2, 2j + 1)) = {1} for 0 ≤ i ≤
r − 1 and 1 ≤ j ≤ s, and g2(x) = ∅ otherwise,

g3((4i + 2, 1)) = {1}, g3((4i + 4, 1)) = {2} for 0 ≤ i ≤ r − 1, g3((4i + 3, 2j)) =
g3((4i + 1, 2j + 1)) = {1}, g3((4i + 1, 2j)) = g3((4i + 3, 2j + 1)) = {2} for 0 ≤ i ≤
r − 1 and 1 ≤ j ≤ s, and g3(x) = ∅ otherwise,

g4((4i + 2, 1)) = {2}, g4((4i + 4, 1)) = {1} for 0 ≤ i ≤ r − 1, g4((4i + 3, 2j)) =
g4((4i + 1, 2j + 1)) = {2}, g4((4i + 1, 2j)) = g4((4i + 3, 2j + 1)) = {1} for 0 ≤ i ≤
r − 1 and 1 ≤ j ≤ s, and g4(x) = ∅ otherwise.

It is easy to see that {g1, g2, g3, g4} is a 2RDF family of Cm⊗Cn and so dr2(Cm⊗
Cn) ≥ 4. Thus dr2(Cm ⊗ Cn) = 4.

We conclude this paper with a problem.

Problem. Determine the exact value of dr2(Cm¤Cn) and dr2(Cm ⊗ Cn) for all m
and n.
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