• Title/Summary/Keyword: Digital techniques

Search Result 2,274, Processing Time 0.031 seconds

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.

The Properties of Beam Intensity Scanner (BInS) for Dose Verification in Intensity Modulated Radiation Therapy (방사선 세기 조절 치료에서 선량을 규명하는 데 사용된 BlnS System의 특성)

  • 박영우;박광열;박경란;권오현;이명희;이병용;지영훈;김근묵
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Patient dose verification is one of the most Important responsibilities of the physician in the treatment delivery of radiation therapy. For the task, it is necessary to use an accurate dosimeter that can verify the patient dose profile, and it is also necessary to determine the physical characteristics of beams used in intensity modulated radiation therapy (IMRT) The Beam Intensity Scanner (BInS) System is presented for the dosimetric verification of the two dimensional photon beam. The BInS has a scintillator, made of phosphor Terbium-doped Gadolinium Oxysulphide (Gd$_2$O$_2$S:Tb), to produce fluorescence from the irradiation of photon and electron beams. These fluoroscopic signals are collected and digitized by a digital video camera (DVC) and then processed by custom made software to express the relative dose profile in a 3 dimensional (3D) plot. As an application of the BInS, measurements related to IWRT are made and presented in this work. Using a static multileaf collimator (SMLC) technique, the intensity modulated beam (IMB) is delivered via a sequence of static portals made by controlled leaves. Thus, when static subfields are generated by a sequence of abutting portals, the penumbras and scattered photons of the delivered beams overlap in abutting field regions and this results in the creation of “hot spots”. Using the BInS, inter-step “hot spots” inherent in SMLC are measured and an empirical method to remove them is proposed. Another major MLC technique in IMRT, the dynamic multileaf collimator (DMLC) technique, has different characteristics from SMLC due to a different leaf operation mechanism during the irradiation of photon and electron beams. By using the BInS, the actual delivered doses by SMLC and DMLC techniques are measured and compared. Even if the planned dose to a target volume is equal in our experimental setting, the actual delivered dose by DMLC technique is measured to be larger by 14.8% than that by SMLC, and this is due to scattered photons and contaminant electrons at d$_{max}$.

  • PDF

Development of Quality Assurance Program for the On-board Imager Isocenter Accuracy with Gantry Rotation (갠트리 회전에 의한 온-보드 영상장치 회전중심점의 정도관리 프로그램 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.212-223
    • /
    • 2006
  • Positional accuracy of the on-board imager (OBI) isocenter with gantry rotation was presented in this paper. Three different type of automatic evaluation methods of discrepancies between therapeutic and OBI isocenter using digital image processing techniques as well as a procedure stated in the customer acceptance procedure (CAP) were applied to check OBI isocenter migration trends. Two kinds of kV x-ray image set obtained at OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ},\;270^{\circ}$ and every $10^{\circ}$ and raw projection data for cone-beam CT reconstruction were used for each evaluation method. Efficiencies of the methods were also estimated. If a user needs to obtain an isocenter variation map with full gantry rotation, a method taking OBI image for every $10^{\circ}$ and fitting with 5th order polynomial was appropriate. However for a mere quality assurance (QA) purpose of OBI isocenter accuracy, it was adequate to use only four OBI Images taken at the OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ}\;and\;270^{\circ}$. Maximal discrepancy was 0.44 mm which was observed between the OBI source angle of $90^{\circ}\;and\;180^{\circ}$ OBI isocenter accuracy was maintained below 0.5 mm for a year. Proposed QA program may be helpful to Implement a reasonable routine QA of the OBI isocenter accuracy without great efforts.

  • PDF

Design and Implementation of Medical Information System using QR Code (QR 코드를 이용한 의료정보 시스템 설계 및 구현)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • The new medical device technologies for bio-signal information and medical information which developed in various forms have been increasing. Information gathering techniques and the increasing of the bio-signal information device are being used as the main information of the medical service in everyday life. Hence, there is increasing in utilization of the various bio-signals, but it has a problem that does not account for security reasons. Furthermore, the medical image information and bio-signal of the patient in medical field is generated by the individual device, that make the situation cannot be managed and integrated. In order to solve that problem, in this paper we integrated the QR code signal associated with the medial image information including the finding of the doctor and the bio-signal information. bio-signal. System implementation environment for medical imaging devices and bio-signal acquisition was configured through bio-signal measurement, smart device and PC. For the ROI extraction of bio-signal and the receiving of image information that transfer from the medical equipment or bio-signal measurement, .NET Framework was used to operate the QR server module on Window Server 2008 operating system. The main function of the QR server module is to parse the DICOM file generated from the medical imaging device and extract the identified ROI information to store and manage in the database. Additionally, EMR, patient health information such as OCS, extracted ROI information needed for basic information and emergency situation is managed by QR code. QR code and ROI management and the bio-signal information file also store and manage depending on the size of receiving the bio-singnal information case with a PID (patient identification) to be used by the bio-signal device. If the receiving of information is not less than the maximum size to be converted into a QR code, the QR code and the URL information can access the bio-signal information through the server. Likewise, .Net Framework is installed to provide the information in the form of the QR code, so the client can check and find the relevant information through PC and android-based smart device. Finally, the existing medical imaging information, bio-signal information and the health information of the patient are integrated over the result of executing the application service in order to provide a medical information service which is suitable in medical field.

Discussions on the Distribution and Genesis of Mountain Ranges in the Korean Peninsular (II) : The Proposal of 'Sanjulgi-Jido(Mountain Ridge Map)‘ (한국 산맥론(II): 한반도 '산줄기 지도'의 제안)

  • Park Soo Jin;SON ILL
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.253-273
    • /
    • 2005
  • In recent years, there are strong social demands to characterize the spatial distribution of mountains in Korea. This study aims to develop a 'Sanjulgi-Jido(mountain ridge map)' that might be used not only to satisfy these social demands but also to effectively present the spatial distribution of mountains and drainage basins in the Korean Peninsular. The 'Sanjulgi-Jido' developed in this study is a map that presents the continuity of mountains based on the drainage divides that are delineated by a pre-defined drainage basin size and elevation. This study first validated the Bakdudaegan system through the analyses of a digital elevation model. The Bakdudaegan system has long been recognized as the Koreans traditional conceptual framework to characterize the spatial distribution of mountains. The analyses showed that the Bakdudaegan system has several problems to represent the mountain systems in Korea, which includes 1) the lack of the representativeness of drainage basins, 2) inaccuracy to depict the boundary of drainage basins, 3) the lack of representativeness of mountains, and 4) geo-polical issue that confines the spatial extent of mountain systems within the Korean Peninsular. In order to represent the mountains system in a more quantitative manner, we applied several terrain analysis techniques to understand the spatial distribution of mountains and drainage basins. Based on these analyses, we developed an hierarchical system to classify the continuity (If mountains, which are presented as the spatial distribution of drainage divides with a certain elevation. The first-order Sanjulgi is the drainage divides whose drainage basin are bigger than $5,000km^2$ and the point elevation is above 100m. The next order Sanjulgi is delineated as the size of drainage basin is successively divided by two. This kind of design is able to provide a logical framework to present the mountain systems at different details, depending on the purpose and scale of maps. We also provide several empirical functions to calculate various geomorphological indices for each order of Sanjulgi. The 'Sanjulgi Jido' is similar with the Bakdudaegan system, since it characterizes the continuity of mountains based on the spatial distribution of the drainage divide. It, however, has more scientific criteria to define the scale and continuity of mountains. It should be also noted that the 'Sanjulgi Jido' proposed has different logical and methodological background, compared with the mountain range map that explains the genesis of mountain systems in addition to the continuity of mountains.

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

Application of Automated Microscopy Equipment for Rock Analog Material Experiments: Static Grain Growth and Simple Shear Deformation Experiments Using Norcamphor (유사물질 실험을 위한 자동화 현미경 실험 기기의 적용과 노캠퍼를 이용한 입자 성장 및 단순 전단 변형 실험의 예)

  • Ha, Changsu;Kim, Sungshil
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.233-245
    • /
    • 2021
  • Many studies on the microstructures in rocks have been conducted using experimental methods with various equipment as well as natural rock studies to see the development of microstructures and understand their mechanisms. Grain boundary migration of mineral aggregates in rocks could cause grain growth or grain size changes during metamorphism or deformation as one of the main recrystallization mechanisms. This study suggests improved ways regarding the analog material experiments with reformed equipment to see sequential observations of these grain boundary migration. It can be more efficient than the existing techniques and carry out an appropriate microstructure analysis. This reformed equipment was implemented to enable optical manipulation by mounting polarizing plates capable of rotating operation on a stereoscopic microscope and a deformation rig capable of experimenting with analog materials. The equipment can automatically control the temperature and strain rate of the deformation rig by microcontrollers and programming and can take digital photomicrographs with constant time intervals during the experiment to observe any microstructure changes. The composite images synthesized using images by rotated polarizing plates enable us to see more accurate grain boundaries. As a rock analog material, norcamphor(C7H10O) was used, which has similar birefringence to quartz. Static grain growth and simple shear deformation experiments were performed using the norcamphor to verify the effectiveness of the equipment. The static grain growth experiments showed the characteristics of typical grain growth behavior. The number of grains decreases and the average grain size increases over time. These case experiments also showed a clear difference between the growth curves with three temperature conditions. The result of the simple shear deformation experiment under the medium temperature-low strain rate showed no significant change in the average grain size but presented the increased elongation of grain shapes in the direction of about 53° regarding the direction perpendicular to the shearing direction as the shear strain increases over time. These microstructures are interpreted as both the plastic deformation and the internal recovery process in grains are balanced by the deformation under the given experimental conditions. These experiments using the reformed equipment represent the ability to sequentially observe changing the microstructure during experiments as desired in the tests with the analog material during the entire process.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study (딥러닝 알고리즘을 이용한 저선량 디지털 유방 촬영 영상의 복원: 예비 연구)

  • Su Min Ha;Hak Hee Kim;Eunhee Kang;Bo Kyoung Seo;Nami Choi;Tae Hee Kim;You Jin Ku;Jong Chul Ye
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.344-359
    • /
    • 2022
  • Purpose To develop a denoising convolutional neural network-based image processing technique and investigate its efficacy in diagnosing breast cancer using low-dose mammography imaging. Materials and Methods A total of 6 breast radiologists were included in this prospective study. All radiologists independently evaluated low-dose images for lesion detection and rated them for diagnostic quality using a qualitative scale. After application of the denoising network, the same radiologists evaluated lesion detectability and image quality. For clinical application, a consensus on lesion type and localization on preoperative mammographic examinations of breast cancer patients was reached after discussion. Thereafter, coded low-dose, reconstructed full-dose, and full-dose images were presented and assessed in a random order. Results Lesions on 40% reconstructed full-dose images were better perceived when compared with low-dose images of mastectomy specimens as a reference. In clinical application, as compared to 40% reconstructed images, higher values were given on full-dose images for resolution (p < 0.001); diagnostic quality for calcifications (p < 0.001); and for masses, asymmetry, or architectural distortion (p = 0.037). The 40% reconstructed images showed comparable values to 100% full-dose images for overall quality (p = 0.547), lesion visibility (p = 0.120), and contrast (p = 0.083), without significant differences. Conclusion Effective denoising and image reconstruction processing techniques can enable breast cancer diagnosis with substantial radiation dose reduction.

Establishing Optimal Conditions for LED-Based Speed Breeding System in Soybean [Glycine max (L.) Merr.] (LED 기반 콩[Glycine max (L.) Merr.] 세대단축 시스템 구축을 위한 조건 설정)

  • Gyu Tae Park;Ji-Hyun Bae;Ju Seok Lee;Soo-Kwon Park;Dool-Yi Kim;Jung-Kyung Moon;Mi-Suk Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Plant breeding is a time-consuming process, mainly due to the limited annual generational advancement. A speed breeding system, using LED light sources, has been applied to accelerate generational progression in various crops. However, detailed protocols applicable to soybeans are still insufficient. In this study, we report the optimized protocols for a speed breeding system comprising 12 soybean varieties with various maturity ecotypes. We investigated the effects of two light qualities (RGB ratio), three levels of light intensity (PPFD), and two soil conditions on the flowering time and development of soybeans. Our results showed that an increase in the red wavelength of the light spectrum led to a delay in flowering time. Furthermore, as light intensity increased, flowering time, average internode length, and plant height decreased, while the number of nodes, branches, and pods increased. When compared to agronomic soil, horticultural soil resulted in an increase of more than 50% in the number of nodes, branches, and pods. Consequently, the optimal conditions were determined as follows: a 10-hour short-day photoperiod, an equal RGB ratio (1:1:1), light intensity exceeding 1,300 PPFD, and the use of horticultural soil. Under these conditions, the average flowering time was found to be 27.3±2.48 days, with an average seed yield of 7.9±2.67. Thus, the speed breeding systems reduced the flowering time by more than 40 days, compared to the average flowering time of Korean soybean resources (approximately 70 days). By using a controlled growth chamber that is unaffected by external environmental conditions, up to 6 generations can be achieved per year. The use of LED illumination and streamlined facilities further contributes to cost savings. This study highlights the substantial potential of integrating modern crop breeding techniques, such as digital breeding and genetic editing, with generational shortening systems to accelerate crop improvement.