References
- M. Dillinger, N. Alonistioti, and K. Madani, "Software Defined Radio: Architectures, Systems and Functions," Wiley, 2003.
- R. H. Hosking, "Critical Techniques for High Speed A/D Converters in Real-Time Systems," PENTEK, 2010.
- H. M. Seo, C. G. Woo, and P. Choi, "Relationship Between ADC Performance and Requirements of Digital-IF Receiver for WCDMA Base-Station," IEEE Trans. on Vehicular Technology, vol. 52, no. 5, pp. 1398-1408, Sep. 2003. https://doi.org/10.1109/TVT.2003.816621
- A. M. A. Ali, et al., "A 16-bit 250-MS/s IF Sampling Pipelined ADC With Background Calibration," IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2602-2612, Dec. 2010. https://doi.org/10.1109/JSSC.2010.2073194
-
T. J. An, et al., "10b 150MS/s
$0.4mm^2$ 45nm CMOS ADC Based on Process-Insensitive Amplifiers," Proc. ISCAS, pp. 361-364, May 2013. - Y. H. Kim, et al., "A 10-bit 300MSample/s Pipelined ADC using Time-Interleaved SAR ADC for Front-End Stages," Proc. ISCAS, pp. 4041-4044, May 2010.
- P. Huang, et al, "SHA-Less Pipelined ADC With In Situ Background Clock-Skew Calibration," IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1893-1903, Aug. 2011. https://doi.org/10.1109/JSSC.2011.2151510
- B. Peng, et al., "A 48-mW, 12-bit, 150-MS/s Pipelined ADC with Digital Calibration in 65nm CMOS," in Proc. CICC, pp.1-4, Sept. 2011.
- H. W. Chen, at al, "A 10-b 320-MS/s Stage- Gain-Error Self-Calibration Pipeline ADC," IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1334-1343, Jun. 2012. https://doi.org/10.1109/JSSC.2012.2192655
- Y. J. Kim, et al., "A 9.43-ENOB 160MS/s 1.2V 65nm CMOS ADC based on multi-stage amplifiers," in Proc. CICC, pp.271-274, Sept. 2009.
- Y. J. Kim and S. H. Lee, "A 10-b 120-MS/s 45 nm CMOS ADC using a re-configurable three-stage switched amplifier," Analog Integrated Circuits and Signal Processing, vol. 72, no. 1, pp.75-87, July 2012. https://doi.org/10.1007/s10470-012-9854-3
-
C. Y. Chen, et al, "A 12-Bit 3 GS/s Pipeline ADC With 0.4
$mm^2$ and 500 mW in 40 nm Digital CMOS," IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 1013-1021, Apr. 2012. https://doi.org/10.1109/JSSC.2012.2185192 - Y. J. Kim, K. H. Lee, M. H. Lee, and S. H. Lee, "A 0.31pJ/conversion-step 12-bit 100MS/s 0.13um CMOS A/D converter for 3G communication system," IEICE Trans. on Electronics, vol. E92-C, no. 9, pp. 1194-1200, Sept. 2009. https://doi.org/10.1587/transele.E92.C.1194
- M. M. Ahmadi, "A New Modeling and Optimization of Gain-Boosted Cascode Amplifier for High-Speed and Low-Voltage Applications," IEEE Trans. Circuits Syst. II, vol. 53, no. 3, pp. 169-173, Mar. 2006. https://doi.org/10.1109/TCSII.2005.858493
- K. Bult and J. G. M. Geelen, "A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain," IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1379-1384, Dec. 1990. https://doi.org/10.1109/4.62165
- C. Zemke, et al., "Numerical analysis of parasitic effects in deep submicron technologies", Synopsys Users Group, 2005.
- J. Watts, et al., "Netlisting and modeling well-proximity effects," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2179-2186, Sept. 2006. https://doi.org/10.1109/TED.2006.880176
- P. G. Drennan, et al., "Implications of proximity effects for analog design," in Proc. CICC, pp. 169-176, Sept. 2006.
- Seung-Jae Park, Byeong-Woo Koo, and Seung-Hoon Lee, "A 12b 100MS/s 1V 24mW 0.13um CMOS ADC for Low-Power Mobile Applications," Journal of the Institute of Electronics and Information Engineers, vol. 47, SD, no. 8, pp. 56-63, Aug. 2010.
- J. S. Park, et al, "A 12b 100 MS/s Three-Step Hybrid Pipeline ADC Based on Time-Interleaved SAR ADCs," Journal of Semiconductor Technology and Science, vol. 14, no. 2, pp. 189-197, Apr. 2014. https://doi.org/10.5573/JSTS.2014.14.2.189
-
Tai-Ji An, et al, "A 1.1V 12b 100MS/s
$0.43mm^2$ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology," Journal of the Institute of Electronics and Information Engineers, vol. 50, SD, no. 7, pp. 122-130, Jul. 2013. https://doi.org/10.5573/ieek.2013.50.7.122 - C. Jack, B. Lane, and H. S. Lee, "A zero-crossing based 12b 100MS/s pipeline ADC with decision boundary gap estimation calibration," in Symp. VLSI Circuits Dig. Tech. Papers, pp. 237-238, June 2010.
-
D. H. Hwang, et al, "A Range-Scaled 13b 100MS/s
$0.13{\mu}m$ CMOS SHA-Free ADC Based on a Single Reference," Journal of Semiconductor Technology and Science, vol. 13, no. 2, pp. 98-107, Apr. 2013. https://doi.org/10.5573/JSTS.2013.13.2.98 - A. Panigada and I. Galton, "A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3314- 3328, Dec. 2009. https://doi.org/10.1109/JSSC.2009.2032637
-
P. Bogner, F. Kuttner, C. Kropf, T. Hartig, M. Burian, and H. Eul, "A 14b 100MS/s Digitally Self-Calibrated Pipelined ADC in
$0.13{\mu}m$ CMOS," in ISSCC Dig. Tech Paper, pp. 224-225, Feb. 2006. - Z. Wang, M. Wang, W. Gu, C. Chen, F. Ye, and J. Pen, "A High-Linearity Pipelined ADC With Opamp Split-Sharing in a Combined Front-End of S/H and MDAC1," IEEE Trans. Circuits Syst. I, vol. 60, no. 11, pp. 2834-2844, Nov. 2013. https://doi.org/10.1109/TCSI.2013.2252643