• Title/Summary/Keyword: Digital Systems

Search Result 5,820, Processing Time 0.029 seconds

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.

A CF-based Health Functional Recommender System using Extended User Similarity Measure (확장된 사용자 유사도를 이용한 CF-기반 건강기능식품 추천 시스템)

  • Sein Hong;Euiju Jeong;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.1-17
    • /
    • 2023
  • With the recent rapid development of ICT(Information and Communication Technology) and the popularization of digital devices, the size of the online market continues to grow. As a result, we live in a flood of information. Thus, customers are facing information overload problems that require a lot of time and money to select products. Therefore, a personalized recommender system has become an essential methodology to address such issues. Collaborative Filtering(CF) is the most widely used recommender system. Traditional recommender systems mainly utilize quantitative data such as rating values, resulting in poor recommendation accuracy. Quantitative data cannot fully reflect the user's preference. To solve such a problem, studies that reflect qualitative data, such as review contents, are being actively conducted these days. To quantify user review contents, text mining was used in this study. The general CF consists of the following three steps: user-item matrix generation, Top-N neighborhood group search, and Top-K recommendation list generation. In this study, we propose a recommendation algorithm that applies an extended similarity measure, which utilize quantified review contents in addition to user rating values. After calculating review similarity by applying TF-IDF, Word2Vec, and Doc2Vec techniques to review content, extended similarity is created by combining user rating similarity and quantified review contents. To verify this, we used user ratings and review data from the e-commerce site Amazon's "Health and Personal Care". The proposed recommendation model using extended similarity measure showed superior performance to the traditional recommendation model using only user rating value-based similarity measure. In addition, among the various text mining techniques, the similarity obtained using the TF-IDF technique showed the best performance when used in the neighbor group search and recommendation list generation step.

Study on the Effect of Self-Disclosure Factor on Exposure Behavior of Social Network Service (자기노출 요인이 소셜 네트워크 서비스의 노출행동에 미치는 영향에 관한 연구)

  • Do Soon Kwon;Seong Jun Kim;Jung Eun Kim;Hye In Jeong;Ki Seok Lee
    • Information Systems Review
    • /
    • v.18 no.3
    • /
    • pp.209-233
    • /
    • 2016
  • Internet companies that utilize social network have increased in number. The introduction of diverse social media services facilitated innovative changes in e-business. Social network service (SNS), which is a domain of social media, is a web-based service designed to strengthen human relations in the Internet and build new social relations. The remarkable growth of social network services and the profit generation and perception of this service are the new growth engines of this digital age. Given this development, many global IT companies views SNS as the most powerful form of social media. Thus, they invest efforts to develop business models using SNS.2) This study verifies the impact of privacy exposure in SNS as a result of privacy invasion. This study examines the purpose of using the SNS and user's awareness of the significance of personal information, which are key factors that affect self-disclosure of personal information. This study utilizes theory of reasoned action (TRA) to provide a theoretical platform that describes the specific behavior and emotional response of individuals. This study presents a research model that considers negative attitude (negatude). In this model, self-disclosure in SNS is considered a TRA. TRA is a subjective norm, a behavioral intention, and a key variable of exposure behavior. A survey was conducted on college students at Y university in Seoul to empirically verify the research model. The students have experiences in using SNS. A total of 198 samples were collected. Path analysis was applied to analyze the relations of factors. The results of path analysis show the statistically insignificant impact of privacy invasion on negatude, subjective norm, behavioral intention, and exposure behavior. The impact of unrecognized privacy invasion was also considered insignificant. The impacts of intention to use SNS on negatude, subjective norm, behavioral intention, and exposure behavior was significant. A significant impact was also found for the significance of personal information on subjective norm, behavioral intention, and exposure behavior, whereas the impact on negatude was insignificant. The impact of subjective norm on behavioral intention was significant. Lastly, the impact of behavioral intention on exposure behavior was insignificant. These findings are significant because the study examined the process of self-disclosure by integrating psychological and social factors based on theoretical discussion.

A Study on the Priority of RoboAdvisor Selection Factors: From the Perspective of Analyzing Differences between Users and Providers Using AHP (로보어드바이저 선정요인의 우선순위에 관한 연구: AHP를 이용한 사용자와 제공자의 차이분석 관점으로)

  • Young Woong Woo;Jae In Oh;Yun Hi Chang
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.145-162
    • /
    • 2023
  • Asset management is a complex and difficult field that requires insight into numerous variables and even human psychology. Thus, it has traditionally been the domain of professionals, and these services have been expensive to obtain. Changes are taking place in these markets, and the driving force is the digital revolution, so-called the fourth industrial revolution. Among them, the Robo-Advisor service using artificial intelligence technology is the highlight. The reason is that it is possible to popularize investment advisory services with convenient accessibility and low cost. This study aims to clarify what factors are critically important when selecting robo-advisors for service users and providers in Korea, and what perception differences exist in the selection factors between user and provider groups. The framework of the study was based on the marketing mix 4C model, and the design and analysis of the model used Delphi survey and AHP. Through the study design, 4 main criteria and 15 sub-criteria were derived, and the findings of the study are as follows. First, the importance of the four main criteria was in the order of customer needs > customer convenience > customer cost > customer communication for both groups. Second, looking at the 15 sub-criteria, it was found that investment purpose coverage, investment propensity coverage, fee level and accessibility factors were the most important. Third, when comparing between groups, the user group found that the fee level and accessibility factors were the most important, and the provider group recognized the investment purpose coverage and investment propensity coverage factors as important. This study derived useful implications in practice. First, when designing for the spread of the robo-advisor service, the basis for constructing a user-oriented system was prepared by considering the priority of importance according to the weight difference between the four main criteria and the 15 sub-criteria. In addition, the difference in priority of each sub-criteria shown in the group comparison and the cause of the sub-criteria with large weight differences were identified. In addition, it was suggested that it is very important to form a consensus to resolve the difference in perception of factors between those in charge of strategy and marketing and system development within the provider group. Academically, it is meaningful in that it is an early study that presented various perspectives and perspectives by deriving a number of robo-advisor selection factors. Through the findings of this study, it is expected that a successful user-oriented robo-advisor system can be built and spread in Korea to help users.

Establishing Optimal Conditions for LED-Based Speed Breeding System in Soybean [Glycine max (L.) Merr.] (LED 기반 콩[Glycine max (L.) Merr.] 세대단축 시스템 구축을 위한 조건 설정)

  • Gyu Tae Park;Ji-Hyun Bae;Ju Seok Lee;Soo-Kwon Park;Dool-Yi Kim;Jung-Kyung Moon;Mi-Suk Seo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.304-312
    • /
    • 2023
  • Plant breeding is a time-consuming process, mainly due to the limited annual generational advancement. A speed breeding system, using LED light sources, has been applied to accelerate generational progression in various crops. However, detailed protocols applicable to soybeans are still insufficient. In this study, we report the optimized protocols for a speed breeding system comprising 12 soybean varieties with various maturity ecotypes. We investigated the effects of two light qualities (RGB ratio), three levels of light intensity (PPFD), and two soil conditions on the flowering time and development of soybeans. Our results showed that an increase in the red wavelength of the light spectrum led to a delay in flowering time. Furthermore, as light intensity increased, flowering time, average internode length, and plant height decreased, while the number of nodes, branches, and pods increased. When compared to agronomic soil, horticultural soil resulted in an increase of more than 50% in the number of nodes, branches, and pods. Consequently, the optimal conditions were determined as follows: a 10-hour short-day photoperiod, an equal RGB ratio (1:1:1), light intensity exceeding 1,300 PPFD, and the use of horticultural soil. Under these conditions, the average flowering time was found to be 27.3±2.48 days, with an average seed yield of 7.9±2.67. Thus, the speed breeding systems reduced the flowering time by more than 40 days, compared to the average flowering time of Korean soybean resources (approximately 70 days). By using a controlled growth chamber that is unaffected by external environmental conditions, up to 6 generations can be achieved per year. The use of LED illumination and streamlined facilities further contributes to cost savings. This study highlights the substantial potential of integrating modern crop breeding techniques, such as digital breeding and genetic editing, with generational shortening systems to accelerate crop improvement.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

Development of New Device for the Rapid Measurement of the freshness of Wet Fish by Using Micro Computer (마이크로 컴퓨터를 이용한 어육의 신선도 측정장치의 개발)

  • CHO Young-Je;LEE Nam-Geoul;KIM Sang-Bong;CHOI Young-Joon;LEE Keun-Woo;KIM Geon-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.253-262
    • /
    • 1995
  • To develop a device for measuring fish freshness which could be move accurate and reliable than used freshness measuring systems. A new device based on digital circuit was designed using a microcomputer. The device was composed of a sensor part, 8096 microprocessor and a segment display. The effectiveness of device has been evaluated by the coefficient of correlation among the measured freshness stores such as electrical Q-value, K-value and amount of volatile basic nitrogen (VBN) of plaice, Paralichthys Olivaceus, during storage at $-3^{\circ}C,\;0^{\circ}C,\;5^{\circ}C,\;10^{\circ}C,\;and\;25^{\circ}C$. Q-values measured by a new device were more closely correlated with K-value (r=-0.978-\;-0.962,\;p<0.05) and VBN (r=-0.888-\;-0.988,\;p<0.05) in case of plaice meat. If more data would achieve using various fishes, this new designed device could be a valuable kit in fish market by its compact portability.

  • PDF

Image Watermarking for Copyright Protection of Images on Shopping Mall (쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.147-157
    • /
    • 2013
  • With the advent of the digital environment that can be accessed anytime, anywhere with the introduction of high-speed network, the free distribution and use of digital content were made possible. Ironically this environment is raising a variety of copyright infringement, and product images used in the online shopping mall are pirated frequently. There are many controversial issues whether shopping mall images are creative works or not. According to Supreme Court's decision in 2001, to ad pictures taken with ham products is simply a clone of the appearance of objects to deliver nothing but the decision was not only creative expression. But for the photographer's losses recognized in the advertising photo shoot takes the typical cost was estimated damages. According to Seoul District Court precedents in 2003, if there are the photographer's personality and creativity in the selection of the subject, the composition of the set, the direction and amount of light control, set the angle of the camera, shutter speed, shutter chance, other shooting methods for capturing, developing and printing process, the works should be protected by copyright law by the Court's sentence. In order to receive copyright protection of the shopping mall images by the law, it is simply not to convey the status of the product, the photographer's personality and creativity can be recognized that it requires effort. Accordingly, the cost of making the mall image increases, and the necessity for copyright protection becomes higher. The product images of the online shopping mall have a very unique configuration unlike the general pictures such as portraits and landscape photos and, therefore, the general image watermarking technique can not satisfy the requirements of the image watermarking. Because background of product images commonly used in shopping malls is white or black, or gray scale (gradient) color, it is difficult to utilize the space to embed a watermark and the area is very sensitive even a slight change. In this paper, the characteristics of images used in shopping malls are analyzed and a watermarking technology which is suitable to the shopping mall images is proposed. The proposed image watermarking technology divide a product image into smaller blocks, and the corresponding blocks are transformed by DCT (Discrete Cosine Transform), and then the watermark information was inserted into images using quantization of DCT coefficients. Because uniform treatment of the DCT coefficients for quantization cause visual blocking artifacts, the proposed algorithm used weighted mask which quantizes finely the coefficients located block boundaries and coarsely the coefficients located center area of the block. This mask improves subjective visual quality as well as the objective quality of the images. In addition, in order to improve the safety of the algorithm, the blocks which is embedded the watermark are randomly selected and the turbo code is used to reduce the BER when extracting the watermark. The PSNR(Peak Signal to Noise Ratio) of the shopping mall image watermarked by the proposed algorithm is 40.7~48.5[dB] and BER(Bit Error Rate) after JPEG with QF = 70 is 0. This means the watermarked image is high quality and the algorithm is robust to JPEG compression that is used generally at the online shopping malls. Also, for 40% change in size and 40 degrees of rotation, the BER is 0. In general, the shopping malls are used compressed images with QF which is higher than 90. Because the pirated image is used to replicate from original image, the proposed algorithm can identify the copyright infringement in the most cases. As shown the experimental results, the proposed algorithm is suitable to the shopping mall images with simple background. However, the future study should be carried out to enhance the robustness of the proposed algorithm because the robustness loss is occurred after mask process.

Analysis of the Time-dependent Relation between TV Ratings and the Content of Microblogs (TV 시청률과 마이크로블로그 내용어와의 시간대별 관계 분석)

  • Choeh, Joon Yeon;Baek, Haedeuk;Choi, Jinho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.163-176
    • /
    • 2014
  • Social media is becoming the platform for users to communicate their activities, status, emotions, and experiences to other people. In recent years, microblogs, such as Twitter, have gained in popularity because of its ease of use, speed, and reach. Compared to a conventional web blog, a microblog lowers users' efforts and investment for content generation by recommending shorter posts. There has been a lot research into capturing the social phenomena and analyzing the chatter of microblogs. However, measuring television ratings has been given little attention so far. Currently, the most common method to measure TV ratings uses an electronic metering device installed in a small number of sampled households. Microblogs allow users to post short messages, share daily updates, and conveniently keep in touch. In a similar way, microblog users are interacting with each other while watching television or movies, or visiting a new place. In order to measure TV ratings, some features are significant during certain hours of the day, or days of the week, whereas these same features are meaningless during other time periods. Thus, the importance of features can change during the day, and a model capturing the time sensitive relevance is required to estimate TV ratings. Therefore, modeling time-related characteristics of features should be a key when measuring the TV ratings through microblogs. We show that capturing time-dependency of features in measuring TV ratings is vitally necessary for improving their accuracy. To explore the relationship between the content of microblogs and TV ratings, we collected Twitter data using the Get Search component of the Twitter REST API from January 2013 to October 2013. There are about 300 thousand posts in our data set for the experiment. After excluding data such as adverting or promoted tweets, we selected 149 thousand tweets for analysis. The number of tweets reaches its maximum level on the broadcasting day and increases rapidly around the broadcasting time. This result is stems from the characteristics of the public channel, which broadcasts the program at the predetermined time. From our analysis, we find that count-based features such as the number of tweets or retweets have a low correlation with TV ratings. This result implies that a simple tweet rate does not reflect the satisfaction or response to the TV programs. Content-based features extracted from the content of tweets have a relatively high correlation with TV ratings. Further, some emoticons or newly coined words that are not tagged in the morpheme extraction process have a strong relationship with TV ratings. We find that there is a time-dependency in the correlation of features between the before and after broadcasting time. Since the TV program is broadcast at the predetermined time regularly, users post tweets expressing their expectation for the program or disappointment over not being able to watch the program. The highly correlated features before the broadcast are different from the features after broadcasting. This result explains that the relevance of words with TV programs can change according to the time of the tweets. Among the 336 words that fulfill the minimum requirements for candidate features, 145 words have the highest correlation before the broadcasting time, whereas 68 words reach the highest correlation after broadcasting. Interestingly, some words that express the impossibility of watching the program show a high relevance, despite containing a negative meaning. Understanding the time-dependency of features can be helpful in improving the accuracy of TV ratings measurement. This research contributes a basis to estimate the response to or satisfaction with the broadcasted programs using the time dependency of words in Twitter chatter. More research is needed to refine the methodology for predicting or measuring TV ratings.

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.