• Title/Summary/Keyword: Digital PFC Control

Search Result 44, Processing Time 0.024 seconds

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

Digital Control of Two-Stage Electronic ballast for HID Lamps (2-단계 HID 램프용 전자식 안정기의 디지털 제어)

  • Lee, Woo cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.229-230
    • /
    • 2013
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

  • PDF

A Digital Power Factor Correction(PFC) Control for Input Current Distortion Reduction (입력 전류 왜곡을 저감한 단상 디지털 역률 제어 보상 기법)

  • Youn, Han-Shin;Park, Jin-Sik;Yu, Chan-Hun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.279-280
    • /
    • 2014
  • 이 논문에서는 단상 디지털 역률 제어 보상 기법(PFC)을 제안한다. 제안된 방법은 인덕터 전류의 첨두값을 예측하고 기울기 보상 방법을 적용하여 제어기 출력을 생성함으로써 인덕터 전류의 첨두값을 제한하고, 스위칭 한 주기 안에 연속 도통 모드(CCM)과 불연속 도통 모드(DCM) 전류 제어를 완료한다. 따라서 기존 디지털 평균 전류 제어기에서 문제시 되었던 DCM-CCM 변환구간 즉 경계 도통 모드(BCM)에서 입력 전류 왜곡을 저감하였다. 제안된 제어기법의 유효성은 입력 전압 230Vac, 출력 전압 400V, 출력 750W급의 시제품 실험을 통해 검증하였다.

  • PDF

Implementation of a Digital Ballast for HID Lamps (HID 램프 디지털 안정기의 제작)

  • 이치환
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.31-35
    • /
    • 2003
  • This paper presents a microprocessor controlled digital ballast for HID lamps, which gives intelligent features such as a precise power control, optimum ignition voltage and detection of end of life. Average current mode PFC is employed for reducing EMI and a universal input. Direct spread spectrum is done by applying 1 KHz triangular wave for removing acoustic resonance. This frequency modulation of 1 KHz gives also low EMI level and no ripple on lamp current. The microprocessor controls the voltage of DC-bus, the voltage of ignition pulses, the power of output and the bandwidth of spread spectrum. A 250W digital ballast is implemented with an efficiency of 93% and a maximum EMI level of 55 ㏈${\mu}$V.

  • PDF

A Study on Development of 1.5 [kW] Low-cost Battery Charger for NEVs(Neighborhood Electric Vehicles) (NEV용 1.5[kW]급 저가형 충전기 개발에 관한 연구)

  • Lee, Chan-Song;Jeong, Jin-Beom;Lee, Baek-Haeng;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.574-579
    • /
    • 2012
  • In this paper, the battery charger developed which is satisfy by the characteristics of the rapid control and reduce the cost of the charger. analog-digital mixed mode controller developed with dedicated IC for PWM control and low-performance micro-processor is using for the operation control of charger. The low-cost NEV charger developed to verify the performance and usability is verified with charging battery experiment by of using developed charger.

Single-phase Uninterruptible Power Supply employing Superconducting Magnet Energy Storage Unit

  • Kang, Feel-Soon
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.362-368
    • /
    • 2007
  • A single-phase uninterruptible power supply system equipped with a superconducting magnet energy storage unit is proposed to achieve a simple circuit configuration and higher system reliability. It reduces a number of switching devices by applying a common-arm scheme. Removing some switches or substituting passive elements for active switches can increase the sophistication and reduces degree of freedom in control strategy. However, high-performance DSP controller can execute the complicated control task with no additional cost. Operational principles to normal, stored-energy, and bypass mode are discussed in detail. The validity of the proposed system is verified by experimental results.

Digital Load Sharing Method for Converter parallel Operation (컨버터 병렬운전을 위한 디지털 부하분담 기법)

  • Yoo, Kwang-Min;Kim, Won-Yong;Park, Seung-Hee;Lee, Dong-Hoo;Kim, Yun-Sung;Jeong, Yu-Seok;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.150-157
    • /
    • 2012
  • This paper presents CAN-based parallel-operation and load-sharing techniques for the communication server power supply. With the load information obtained through CAN communication, each modules performs its current control independently and the power unbalance caused by impedance differences of converter modules can be reduced. In conventional method, slave modules are controlled by master module. On the other hand, the proposed load share algorithm uses the Multi-Master method. Therefore, accurate load sharing can be accomplished by the reference structure of each module's average current. Each converter has two stages and it is separated into PFC, which is responsible for harmonic regulation, and LLC resonant converter, which controls output voltage. To verified the performance of the proposed method, two 2KW prototypes has been implemented and experimented.

Robust and Unity Input Power Factor Control Scheme for Electric Vehicle Battery Charger (전기차 배터리 충전기용 강인한 단위 입력 역률 제어장치)

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • This study develops a digital control scheme with power factor correction for a front-end converter in an electric vehicle battery charger. The front-end converter acts as the boost-type switching-mode rectifier. The converter assumes the two roles of the battery charger, which include power factor control and robust charging performance. The proposed control scheme consists of a charging control algorithm and a grid current control algorithm. The scheme aims to obtain unity input power factor and robust performance. Based on the linear average model of the converter, a constant-current constant-voltage charging control algorithm that passes through only one proportional-integral controller and a current feed-forward path is proposed. In the current control algorithm, we utilized a second band pass filter, a single-phase phase-locked loop technique, and a duty-ratio feed-forward term to control the grid current to be in phase with the grid voltage and achieve pure sinusoidal waveform. Simulations and experiments were conducted to verify the effectiveness of the proposed control scheme, both simulations and experiments.

The Cost-effective Eletronic ballast for Metal halide Lamp using DSP (DSP를 이용한 비용 절감형 메탈할라이드 램프용 전자식 안정기)

  • Han, Sang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.108-112
    • /
    • 2017
  • High-intensity-discharge lamps are widely utilized in outdoor and indoor lighting circumstances that need high luminance. In lighting applications for MHD lamps, the size of the lamp ballast circuit is an important factor and should be as small as possible. The electronic ballast for MHD lamps is superior to the electromagnetic(EM) ballast in that it saves energy, and has smaller volume and lighter weight. In this paper, highly efficient cost-effective and small sized electronic ballast for Metal Halide Lamp with high power factor using Digital Signal Processor are proposed. The proposed electronic ballast for MHD lamps combines a boost PFC converter with a half-bridge inverter, the algorithms of the power factor correction and ballast control were implemented using the TI's TMS320LF2406 CPU. Experimental results validate the ballast is also useful and reasonably suggested.

A Study on the Power Factor Improvement of Single-Phase Bridgeless Voltage Doubler Converter (단상 브리지리스 배전압 변환기의 역률 개선에 관한 연구)

  • Koo, Do-Yeon;Kim, Dong-Wook;Lim, Seung-Beom;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.169-170
    • /
    • 2011
  • PFC(Power Factor Correction) converters are commonly designed for CCM(Continuous Conduction Mode). However, DCM(Discontinuous Conduction Mode) appears in the input current near the ZCP(Zero Crossing Point) at light loads, resulting in input current distortion. It is caused by inaccurate average current values obtained in DCM. This paper studies a simple digital control scheme that can be operated in both CCM and DCM with minimal changes to the CCM average current control structure.

  • PDF