• 제목/요약/키워드: Diffusion Length

검색결과 410건 처리시간 0.034초

인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성 (Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF

부숙촉진 미생물 분리 및 분리균의 특성 (Isolation and Characteristics of Composting-promoting-bacteria)

  • 이영한;박상렬
    • 한국토양비료학회지
    • /
    • 제34권6호
    • /
    • pp.394-400
    • /
    • 2001
  • 가축분 및 음식물 퇴비 132점에서 517균주를 분리하고 CMC와 xylan 및 PGA 배지에서 강한 활성을 가지는 10여개의 균주를 선별하여 배추종자 발아를 이용한 작물 inhibition test와 오이 육묘실험으로 growth test를 거쳐 생육이 가장 양호한 LYH201 균주를 야생균주로 선발하였다. Bergey's manual 방법으로 특성을 조사한 결과 LYH201균주는 Gram 양성균으로 내생포자 형성, oxidase, CMCCase, xylanase, catalase, V-P test, methyl red test, arabinose 등의 탄소원 이용성은 양성이었으며, indole을 생성하고, urease, lecithinase, dihydrolase test는 음성이었고, 전자현미경으로 관찰한 결과 길이가 $2.5{\sim}3.0{\mu}m$, 너비가 $0.5{\sim}0.7{\mu}m$의 간균인 Bacillus subtilis로 확인되었다. Bacillus subtilis LYH201 균주를 MMY를 이용하여 배양한 결과 온도 $50^{\circ}C$, pH 6.0에서 생육이 가장 좋았다.

  • PDF

광원의 특성에 따른 Boron-doped p-type Cz-Si 태양전지의 광열화 현상 분석 (An Analysis of Light Induced Degradation with Optical Source Properties in Boron-Doped P-Type Cz-Si Solar Cells)

  • 김수민;배수현;김영도;박성은;강윤묵;이해석;김동환
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.305-309
    • /
    • 2014
  • When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.

Ship-Wake 이론을 이용한 잠수함 항적탐색 가능성 (The Detectability of Submarine's Turbulent Wake on the sea surface using Ship-Wake Theory)

  • 이용철
    • 한국정보통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.773-779
    • /
    • 2011
  • 자유전단류(Shear free flow) 가정을 이용한 수상함 항적모델을 잠수함에 적용 결과 잠수함 난류항적 지름은 $x^n,\;({\frac{1}{5}}{\leq}n\;<{\frac{1}{2}})$ 에 비례하였으며, 난류항적의 최소 확산을 가정할 때(${\sigma}=50.25$, 즉 ${\infty}\;x^{1/5}$인 경우), 길이65m, 폭 6.5m 속력 6kts 인 잠수함의 난류항적 반지름은 잠수함 함미로부터 1.2Km 후방에서 약 20m, 10Km 후방에서는 약 30m에 달하였고, 해수면에서 관측 가능한 잠수함 난류항적은 잔잔한 해상상태에서 잠수함 후방 약 15Km에 이르는 것으로 나타났으나 쇄파가 발생하는 악천후에서는 해수면에서 난류항적을 관측하기는 매우 제한되었다. 이는 적어도 서해와 같이 얕은 잠수함 작전환경에서는 잠수함 난류항적이 해수면에서 나타나는 것을 의미하며 SAR와 같은 탐지체계를 이용 시 탐색 가능함을 의미한다.

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF

무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성 (Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete)

  • 이현진;배수호;권순오;이광명;전준태
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.63-69
    • /
    • 2015
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.

나노 구조를 가지는 다공성 주석 산화물의 전기화학적 특성 (Electrochemical Characterization of Anodic Tin Oxides with Nano-Porous Structure)

  • 이재욱;박수진;신헌철
    • 한국재료학회지
    • /
    • 제21권1호
    • /
    • pp.21-27
    • /
    • 2011
  • A nano-porous structure of tin oxide was prepared using an anodic oxidation process and the sample's electrochemical properties were evaluated for application as an anode in a rechargeable lithium battery. Microscopic images of the as-anodized sample indicated that it has a nano-porous structure with an average pore size of several tens of nanometers and a pore wall size of about 10 nanometers; the structural/compositional analyses proved that it is amorphous stannous oxide (SnO). The powder form of the as-anodized specimen was satisfactorily lithiated and delithiated as the anode in a lithium battery. Furthermore, it showed high initial reversible capacity and superior rate performance when compared to previous fabrication attempts. Its excellent electrode performance is probably due to the effective alleviation of strain arising from a cycling-induced large volume change and the short diffusion length of lithium through the nano-structured sample. To further enhance the rate performance, the attempt was made to create porous tin oxide film on copper substrate by anodizing the electrodeposited tin. Nevertheless, the full anodization of tin film on a copper substrate led to the mechanical disintegration of the anodic tin oxide, due most likely to the vigorous gas evolution and the surface oxidation of copper substrate. The adhesion of anodic tin oxide to the substrate, together with the initial reversibility and cycling stability, needs to be further improved for its application to high-power electrode materials in lithium batteries.

Control of Dimethyl Sulfide Emissions Using Biofiltration

  • Kong, Sei-Hun;Kim, Jo-Chun;Allen, Eric R.;Park, Jong-Kil
    • 한국환경과학회지
    • /
    • 제11권8호
    • /
    • pp.819-827
    • /
    • 2002
  • Laboratory scale experiments were conducted to evaluate the performance of a biofilter for eliminating dimethyl sulfide(DMS). A commercial compost/pine bark nugget mixture served as the biofilter material for the experiments. The gas flow rate and DMS concentration entering the filter were varied to study their effect on the biofilter efficiency. The operating parameters, such as the residence time, inlet concentration, pH, water content, and temperature, were all monitored throughout the filter operation. The kinetic dependence of the DMS removal along the column length was also studied to obtain a quantitative description of the DMS elimination. High DMS removal efficiencies(>95%) were obtained using the compost filter material seeded with activated sludge. DMS pollutant loading rates of up to 5.2 and 5.5 g-DMS/m$^3$/hr were effectively handled by the upflow and downflow biofilter columns, respectively. The macrokinetics of the DMS removal were found to be fractional-order diffusion-limited over the 9 to 25 ppm range of inlet concentrations tested. The upflow column had an average macrokinetic coefficient(K$\_$f/) of 0.0789 $\pm$ 0.0178 ppm$\^$$\sfrac{1}{2}$//sec, while the downflow column had an average coefficient of 0.0935 $\pm$ 0.0200 ppm$\^$$\sfrac{1}{2}$//sec. Shorter residence times resulted in a lower mass transfer of the pollutant from the gas phase to the aqueous liquid phase, thereby decreasing the efficiency.

TiO2/ITO 나노구조체 광전극의 합성 및 염료감응 태양전지에의 적용 (Synthesis of TiO2/ITO Nanostructure Photoelectrodes and Their Application for Dye-sensitized Solar Cells)

  • 김대현;박경수;최영진;최헌진;박재관
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.94-98
    • /
    • 2011
  • A Sn-doped $In_2O_3$ (ITO) nanowire photoelectrode was produced using a simple metal evaporation method at low synthesis temperature (< $540^{\circ}C$). The nanowire electrodes have large surface area compared with that of flat ITO thin film, and show low electrical resistivity of $5.6{\times}10^{-3}{\Omega}cm$ at room temperature. In order to apply ITO nanowires to the photoelectrodes of dye-sensitized solar cell (DSSC), those surfaces were modified by $TiO_2$ nanoparticles using a chemical bath deposition (CBD) method. The conversion efficiency of the fabricated $TiO_2$/ITO nanostructure-based DSSC was obtained at 1.4%, which was increased value by a factor of 6 than one without ITO nanowires photoelectrode. This result is attributed to the large surface area and superior electrical property of the ITO nanowires photoelectrode, as well as the structural advantages, including short diffusion length of photo-induced electrons, of the fabricated $TiO_2$/ITO nanostructure-based DSSC.

PSG막의 급속열처리 방법을 이용한 LDD-nMOSFET의 구조 제작에 관한 연구 (A Study on the Structure Fabrication of LDD-nMOSFET using Rapid Thermal Annealing Method of PSG Film)

  • 류장렬;홍봉식
    • 전자공학회논문지A
    • /
    • 제31A권12호
    • /
    • pp.80-90
    • /
    • 1994
  • To develop VLSI of higher packing density with 0.5.mu.m gate length of less, semiconductor devices require shallow junction with higher doping concentration. the most common method to form the shallow junction is ion implantation, but in order to remove the implantation induced defect and activate the implanted impurities electrically, ion-implanted Si should be annealed at high temperature. In this annealing, impurities are diffused out and redistributed, creating deep PN junction. These make it more difficult to form the shallow junction. Accordingly, to miimize impurity redistribution, the thermal-budget should be kept minimum, that is. RTA needs to be used. This paper reports results of the diffusion characteristics of PSG film by varying Phosphorus weitht %/ Times and temperatures of RTA. From the SIMS.ASR.4-point probe analysis, it was found that low sheet resistance below 100 .OMEGA./ㅁand shallow junction depths below 0.2.mu.m can be obtained and the surface concentrations are measured by SIMS analysis was shown to range from 2.5*10$^{17}$ aroms/cm$^{3}$~3*10$^{20}$ aroms/cm$^{3}$. By depending on the RTA process of PSG film on Si, LDD-structured nMOSFET was fabricated. The junction depths andthe concentration of n-region were about 0.06.mu.m. 2.5*10$^{17}$ atom/cm$^{-3}$ , 4*10$^{17}$ atoms/cm$^{-3}$ and 8*10$^{17}$ atoms/cm$^{3}$, respectively. As for the electrical characteristics of nMOS with phosphorus junction for n- region formed by RTA, it was found that the characteristics of device were improved. It was shown that the results were mainly due to the reduction of electric field which decreases hot carriers.

  • PDF