• Title/Summary/Keyword: Differential difference equations

Search Result 218, Processing Time 0.025 seconds

IMPLICIT-EXPLICIT SECOND DERIVATIVE LMM FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.224-261
    • /
    • 2021
  • The interest in implicit-explicit (IMEX) integration methods has emerged as an alternative for dealing in a computationally cost-effective way with stiff ordinary differential equations arising from practical modeling problems. In this paper, we introduce implicit-explicit second derivative linear multi-step methods (IMEX SDLMM) with error control. The proposed IMEX SDLMM is based on second derivative backward differentiation formulas (SDBDF) and recursive SDBDF. The IMEX second derivative schemes are constructed with order p ranging from p = 1 to 8. The methods are numerically validated on well-known stiff equations.

EXPONENTIALLY FITTED NUMERICAL SCHEME FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS INVOLVING SMALL DELAYS

  • ANGASU, MERGA AMARA;DURESSA, GEMECHIS FILE;WOLDAREGAY, MESFIN MEKURIA
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.419-435
    • /
    • 2021
  • This paper deals with numerical treatment of singularly perturbed differential equations involving small delays. The highest order derivative in the equation is multiplied by a perturbation parameter 𝜀 taking arbitrary values in the interval (0, 1]. For small 𝜀, the problem involves a boundary layer of width O(𝜀), where the solution changes by a finite value, while its derivative grows unboundedly as 𝜀 tends to zero. The considered problem contains delay on the convection and reaction terms. The terms with the delays are approximated using Taylor series approximations resulting to asymptotically equivalent singularly perturbed BVPs. Inducing exponential fitting factor for the term containing the singular perturbation parameter and using central finite difference for the derivative terms, numerical scheme is developed. The stability and uniform convergence of difference schemes are studied. Using a priori estimates we show the convergence of the scheme in maximum norm. The scheme converges with second order of convergence for the case 𝜀 = O(N-1) and for the case 𝜀 ≪ N-1, the scheme converge uniformly with first order of convergence, where N is number of mesh intervals in the domain discretization. We compare the accuracy of the developed scheme with the results in the literature. It is found that the proposed scheme gives accurate result than the one in the literatures.

Stress and Electric Potential Fields in Piezoelectric Smart Spheres

  • Ghorbanpour, A.;Golabi, S.;Saadatfar, M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1920-1933
    • /
    • 2006
  • Piezoelectric materials produce an electric field by deformation, and deform when subjected to an electric field. The coupling nature of piezoelectric materials has acquired wide applications in electric-mechanical and electric devices, including electric-mechanical actuators, sensors and structures. In this paper, a hollow sphere composed of a radially polarized spherically anisotropic piezoelectric material, e.g., PZT_5 or (Pb) (CoW) $TiO_3$ under internal or external uniform pressure and a constant potential difference between its inner and outer surfaces or combination of these loadings has been studied. Electrodes attached to the inner and outer surfaces of the sphere induce the potential difference. The governing equilibrium equations in radially polarized form are shown to reduce to a coupled system of second-order ordinary differential equations for the radial displacement and electric potential field. These differential equations are solved analytically for seven different sets of boundary conditions. The stress and the electric potential distributions in the sphere are discussed in detail for two piezoceramics, namely PZT _5 and (Pb) (CoW) $TiO_3$. It is shown that the hoop stresses in hollow sphere composed of these materials can be made virtually uniform across the thickness of the sphere by applying an appropriate set of boundary conditions.

OSCILLATION OF SECOND-ORDER FUNCTIONAL DYNAMIC EQUATIONS OF EMDEN-FOWLER-TYPE ON TIME SCALES

  • Saker, S.H.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1285-1304
    • /
    • 2010
  • The purpose of this paper is to establish some sufficient conditions for oscillation of solutions of the second-order functional dynamic equation of Emden-Fowler type $\[a(t)x^{\Delta}(t)\]^{\Delta}+p(t)|x^{\gamma}(\tau(t))|\|x^{\Delta}(t)\|^{1-\gamma}$ $sgnx(\tau(t))=0$, $t\;{\geq}\;t_0$, on a time scale $\mathbb{T}$, where ${\gamma}\;{\in}\;(0,\;1]$, a, p and $\tau$ are positive rd-continuous functions defined on $\mathbb{T}$, and $lim_{t{\rightarrow}{\infty}}\;{\tau}(t)\;=\;\infty$. Our results include some previously obtained results for differential equations when $\mathbb{T}=\mathbb{R}$. When $\mathbb{T}=\mathbb{N}$ and $\mathbb{T}=q^{\mathbb{N}_0}=\{q^t\;:\;t\;{\in}\;\mathbb{N}_0\}$ where q > 1, the results are essentially new for difference and q-difference equations and can be applied on different types of time scales. Some examples are worked out to demonstrate the main results.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions (분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

FITTED MESH METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL TURNING POINT PROBLEMS EXHIBITING TWIN BOUNDARY LAYERS

  • MELESSE, WONDWOSEN GEBEYAW;TIRUNEH, AWOKE ANDARGIE;DERESE, GETACHEW ADAMU
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.113-132
    • /
    • 2020
  • In this paper, a class of linear second order singularly perturbed delay differential turning point problems containing a small delay (or negative shift) on the reaction term and when the solution of the problem exhibits twin boundary layers are examined. A hybrid finite difference scheme on an appropriate piecewise-uniform Shishkin mesh is constructed to discretize the problem. We proved that the method is almost second order ε-uniformly convergent in the maximum norm. Numerical experiments are considered to illustrate the theoretical results.

Vibration and Damping Characteristics of Viscoelastically Damped Sandwich Plates (점탄성층이 샌드위치된 복합적층판의 진동감쇠 특성)

  • 김재호;박태학;신현정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2252-2263
    • /
    • 1993
  • The purpose of this study is to verify the vibration and damping characteristics of elastic-viscoelastic-elastic structures, theoretically and experimentally. The forth-order differential equations of motion are derived for the transverse vibration of three-layered plates with viscoelastic core layer. The equations consider both transverse displacements of the constraining layer and the bare base plate as variable and account for the effect of the transverse normal strain and the shear strain of viscoelastic core layer on the vibration of the plates. Finite difference analysis of the equations and experimental measurements are performed on the three-layered plates of completely free boundary condition. Comparative investigations on the theory and the results of direct frequency analysis of NASTRAN are carried out on the same structures.

Oscillatory Behavior of Linear Neutral Delay Dynamic Equations on Time Scales

  • Saker, Samir H.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • By employing the Riccati transformation technique some new oscillation criteria for the second-order neutral delay dynamic equation $$(y(t)+r(t)y({\tau}(t)))^{{\Delta}{\Delta}}+p(t)y(\delta(t))=0$$, on a time scale $\mathbb{T}$ are established. Our results as a special case when $\mathbb{T}=\mathbb{R}$ and $\mathbb{T}=\mathbb{N}$ improve some well known oscillation criteria for second order neutral delay differential and difference equations, and when $\mathbb{T}=q^{\mathbb{N}}$, i.e., for second-order $q$-neutral difference equations our results are essentially new and can be applied on different types of time scales. Some examples are considered to illustrate the main results.

  • PDF

Some Modifications of MacCormark's Methods (MacCormack 방법의 개량에 대한 연구)

  • Ha, Young-Soo;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.5 no.3
    • /
    • pp.93-97
    • /
    • 2005
  • MacCormack's method is an explicit, second order finite difference scheme that is widely used in the solution of hyperbolic partial differential equations. Apparently, however, it has shown entropy violations under small discontinuity. This non-physical shock grows fast and eventually all the meaningful information of the solution disappears. Some modifications of MacCormack's methods follow ideas of central schemes with an advantage of second order accuracy for space and conserve the high order accuracy for time step also. Numerical results are shown to perform well for the one-dimensional Burgers' equation and Euler equations gas dynamic.

  • PDF