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FITTED MESH METHOD FOR SINGULARLY PERTURBED

DELAY DIFFERENTIAL TURNING POINT PROBLEMS

EXHIBITING TWIN BOUNDARY LAYERS†

WONDWOSEN GEBEYAW MELESSE∗, AWOKE ANDARGIE TIRUNEH,

AND GETACHEW ADAMU DERESE

Abstract. In this paper, a class of linear second order singularly per-

turbed delay differential turning point problems containing a small delay
(or negative shift) on the reaction term and when the solution of the prob-

lem exhibits twin boundary layers are examined. A hybrid finite difference

scheme on an appropriate piecewise-uniform Shishkin mesh is constructed
to discretize the problem. We proved that the method is almost second or-

der ε-uniformly convergent in the maximum norm. Numerical experiments

are considered to illustrate the theoretical results.
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1. Introduction

Many real life phenomena in different fields of science are modeled mathemat-
ically by delay differential equations (DDEs). These type of equations arises
widely in scientific fields such as physics, bio-sciences, ecology, control theory,
economics, material science, medicine, and robotics; in which the time evolution
depends not only on present states but also on the states at or near a given time
in the past. DDEs are also prominent in describing several aspects of infectious
disease dynamics such as primary infection, drug therapy, immune response, etc.
In addition, statistical analysis of ecological data has shown that there is evi-
dence of delay effects in the population dynamics of many species, for the detail
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theory of DDEs one can refer the books [3, 6].
If we restrict the class of DDEs in which the highest derivative is multiplied by
a small parameter, then it is said to be a singularly perturbed delay differential
equations (SPDDEs) [10]. In the past less attention had been given for the solu-
tions of SPDDEs. However, in recent years, there has been a growing interest in
the treatment of such problems. This is due to their importance in the modeling
of processes in various fields: such as, in optical bi-stable devices [5], variational
problems in control theory [7, 17], in the hydrodynamics of liquid helium [8], in
the first exit-time problem [15], to describe the human pupil-light reflex [18], in
micro-scale heat transfer [27] and in a variety of models for physiological pro-
cesses or diseases [19, 28].
The study of different classes of SPDDEs was initiated by Lange and Miura
[14, 15, 16], where they used extension of the method of matched asymptotic
expansions for approximating the solution. But in all the cases they excluded
the occurrence of turning points and left it for future study. On the other hand,
Kadalbajoo and Sharma [9, 10, 11] initiated the numerical study of SPDDEs
with small shifts by constructing a variety of numerical schemes. In recent
years, different Scholars further developed numerical schemes for SPDDEs with
negative shift, to mention few [1, 20, 21]. Most of the works developed so far fo-
cuses only on SPDDEs without turning points. In contrast, there are few works
on singularly perturbed delay turning point problems. As far as we know the
papers by Ria and Sharma [22, 23, 24, 25] are the first and also the only notable
works in the treatment of such problems when the solutions exhibit both interior
and boundary layers, where the authors used a fitted mesh and fitted operator
methods and obtained an almost first order uniform convergence. Therefore, its
natural to look for a robust numerical method for SPDDEs with turning points
having a better accuracy and efficiency.
Motivated by the work of Ria and Sharma [25], we consider the following second
order linear singularly perturbed delay differential equation with a turning point
at x = 0:

−εy′′(x)− a(x)y′(x) + b(x)y(x− δ) = f(x), ∀x ∈ Ω = (−1, 1), (1)

y(x) = φ(x), −1− δ ≤ x ≤ −1, y(1) = γ, (2)

where a(x), b(x), f(x) and φ(x) are sufficiently smooth functions on Ω = (−1, 1),
γ is any real constant, 0 < ε � 1 is the singular perturbation parameter, and
δ = o(ε) is the delay parameter (or negative shift). When the shift is zero
(i.e., δ = 0), the solution of the resulting turning point problem exhibits twin

boundary layers or interior layer behavior depending on ε and λ = b(0)
a′(0) i.e., if

λ < 0, then y(x) is smooth near the turning point x = 0, whereas if λ > 0, then
y(x) has a large gradient near x = 0 resulting in an interior layer [4].
In this article we consider the case in which the turning point results into a twin
exponential boundary layers in the solution of the problem, together with the
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following assumptions

a(0) = 0, a′(0) < 0, (3)

b(x) ≥ β > 0, ∀x ∈ Ω̄ = [−1, 1], (4)

|a′(x)| ≥ |a
′(0)|
2

, ∀x ∈ Ω̄ = [−1, 1]. (5)

Under the assumptions (3)–(5), the problem (1)–(2) possesses a unique solution
having twin boundary layers of exponential type at x = ±1 i.e., at both end
points [25].
Here for the numerical treatment of problem (1)–(2), we propose hybrid finite
difference scheme on an appropriate piecewise-uniform Shishkin mesh. Further,
we analyze the stability and uniform convergence of the proposed scheme. In
addition, we investigate the effect of the delay parameter on the behavior of the
solution.
Throughout this paper, M (sometimes sub-scripted) denote a generic positive
constants independent of the singular perturbation parameter ε and in the case
of discrete problems also independent of the mesh parameter N . These con-
stants may assume different values but remains to be constant. The maximum
norm (i.e., ‖f‖ = max−1≤x≤1 |f(x)|) is used for studying the convergence of the
approximate solution to the exact solution of the problem.

2. The Continuous Problem

Using Taylor’s series expansion to approximate the term containing the delay
parameter, gives us

y(x− δ) ≈ y(x)− δy′(x) +
δ2

2
y′′(x), (6)

Substituting (6) into (1)–(2) and simplifying, gives the following asymptotically
equivalent two-point boundary value problem

−(ε− δ2

2
b(x))y′′(x)− (a(x) + δb(x))y′(x) + b(x)y(x) ≈ f(x),

y(−1) ≈ φ(−1), y(1) = γ.
(7)

Since (7) is an approximation version of (1)–(2), it is good to use different
notation (say u(x)) for the solution of this approximate equation. Thus (7)
can be rewritten as

Lu := −Cε(x)u′′(x)−A(x)u′(x) + b(x)u(x) = f(x),

u(−1) = φ(−1) = φ, u(1) = γ(1) = γ,
(8)

where Cε(x) = (ε − δ2

2 b(x)) > 0 and A(x) = a(x) + δb(x). Furthermore, the
terms a(x), b(x) and δ are such that |A(x)| ≥ 2α > 0, for τ < |x| ≤ 1, for some
τ > 0 and later on we will use the term Cε to denote the constant part of Cε(x).
( Here it is to be noted that since b(x) is bounded and δ is a small order of ε,
we have Cε = O(ε)).
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The solution of problem (8) is an approximation to the solution of the original
problem (1)–(2).
We establish some a priori results about the solutions and their derivatives for
the modified problem (8). Hereinafter, we divide the interval Ω̄ in to three
sub intervals as Ω1 = [−1,−τ ], Ω2 = [−τ, τ ] and Ω3 = [τ, 1] such that Ω̄ =
Ω1 ∪ Ω2 ∪ Ω3, where 0 < τ ≤ 1/2. First, we consider the following property of
the operator L of (8).

Lemma 2.1. (Maximum principle)
Let π(x) be any sufficiently smooth function satisfying π(−1) ≥ 0 and π(1) ≥ 0,
such that Lπ(x) ≥ 0 for all x ∈ Ω. Then π(x) ≥ 0 for all x ∈ Ω̄.

Proof. Let x∗ be an arbitrary point in Ω = (−1, 1) such that π(x∗) = minx∈Ω̄{π(x)}
and assume that π(x∗) < 0. Clearly x∗ /∈ {−1, 1}, and from the definition of x∗,
we have π′(x∗) = 0 and π′′(x∗) ≥ 0. But then,

Lπ(x∗) = −Cε(x)π′′(x∗)−A(x∗)π′(x∗) + b(x∗)π(x∗) ≤ 0,

which is a contradiction. It follows that our assumption π(x∗) < 0 is wrong. So,
π(x∗) ≥ 0. Since x∗ is an arbitrary point, π(x) ≥ 0, ∀x ∈ Ω̄ = [−1, 1]. �

Using the maximum principle its easy to prove that:

Lemma 2.2. (Stability Result)
Let u(x) be the solution of the TPP (8). Then ∀Cε > 0 we have

‖u‖ ≤ β−1 ‖f‖+ max (|φ| , |γ|), ∀x ∈ Ω̄ = [−1, 1].

Proof. First we consider the barrier functions ϕ± defined by

ϕ±(x) = β−1 ‖f‖+ max (|φ| , |γ|)± u(x),

Then its easy to show that ϕ±(−1) ≥ 0 and ϕ±(1) ≥ 0, and

Lϕ±(x) = −Cε(x)(ϕ±(x))′′ −A(x)(ϕ±(x))′ + b(x)ϕ±(x)

= b(x)(β−1 ‖f‖+ max (|φ| , |γ|))± Lu(x)

= b(x)(β−1 ‖f‖+ max (|φ| , |γ|))± f(x)

≥ (‖f‖ ± f(x)) + βmax (|φ| , |γ|) ≥ 0.

Therefore, from Lemma 2.1, we obtain ϕ±(x) ≥ 0 for all x ∈ [−1, 1], which gives
the desired estimate. �

The following theorem gives estimates for u and its derivatives in the interval
Ω1 and Ω3 which exclude the turning point x = 0.

Theorem 2.3. Let A(x), b(x) and f(x) ∈ Cm(Ω̄), m > 0. Then there exists
positive constants α and M , such that for A(x) > 0 on Ω1, the solution u(x) of
problem (8) satisfies∣∣∣u(i)(x)

∣∣∣ ≤M [1 + C−iε exp (−α(1 + x)/Cε)], for i = 1, ...,m+ 1,
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and for A(x) < 0 on Ω3 the solution satisfies∣∣∣u(i)(x)
∣∣∣ ≤M [1 + C−iε exp (−α(1− x)/Cε)], for i = 1, ...,m+ 1.

Proof. For the proof of this theorem the reader can refer [25]. �

If λ = b(0)/a′(0) < 0, then the solution u(x) is smooth near the turning point
x = 0 [4]. Using this the following Theorem gives the bound for the derivatives
of the solution in the interval Ω2 which contains the turning point x = 0.

Theorem 2.4. Let λ < 0 and assume that A, b, f ∈ Cm(Ω̄), for m > 0. If
u(x) is the solution of (8) and satisfies all conditions from (3) to (5), then there
exists a positive constant M , such that∣∣∣u(i)(x)

∣∣∣ ≤M, fori = 1, ...,m and ∀x ∈ Ω2.

Proof. For the proof one can see [4, 25]. �

Finally, to prove uniform convergence, we consider the following theorem which
provides bounds for the smooth and singular components of the exact solution
u(x) of problem (8).

Theorem 2.5. Let A, b and f ∈ C4(Ω̄) and assume that the solution u(x) of
the problem (8) is decomposed in to smooth and singular components as

u(x) := v(x) + w(x), ∀x ∈ Ω̄.

Then, for all i, 0 ≤ i ≤ 4 the smooth component satisfies∣∣∣v(i)(x)
∣∣∣ ≤M [1 + C−(i−3)

ε e(x, α)], ∀x ∈ Ω̄,

and the singular component satisfies∣∣∣w(i)(x)
∣∣∣ ≤MC−iε e(x, α), ∀x ∈ Ω̄,

where e(x, α) = (exp (−α(1 + x)/Cε) + exp (−α(1− x)/Cε)).

Proof. For the proof of this theorem the reader can refer [12, 25]. �

3. Discrete Problem

In this section, we describe the piecewise-uniform Shishkin mesh for the dis-
cretization of the domain and propose the hybrid difference scheme used to
discretize the TPP (8).
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3.1. Piecewise-uniform Shishkin mesh. .
Consider the domain Ω̄ = [−1, 1] and let N = 8k and k > 0 is a positive integer.
Since the TPP (8) has two boundary layers at x = ±1, we construct a piecewise-
uniform Shishkin mesh by subdividing the domain Ω̄ into three subintervals
ΩL = [−1,−1 + τ ], ΩC = [−1 + τ, 1 − τ ] and ΩR = [1 − τ, 1] such that Ω̄ =
ΩL ∪ ΩC ∪ ΩR, where the transition parameter τ satisfies 0 < τ ≤ 1/2 and
defined by

τ = min {1

2
,

2Cε
α

lnN}, where Cε = ε− δ2

2
‖b‖ . (9)

Then the discrete mesh Ω̄N is obtained by putting a uniform mesh with N/4
mesh elements in both ΩL and ΩR, and a uniform mesh with N/2 mesh elements
in ΩC . Further, let hi = xi − xi−1, for i = 1, ..., N, denotes the variable step
size. Since the mesh is piecewise-uniform, the mesh elements are given by

xi =


(−1 + τ) + (i−N/4)h for i = 1, ..., N/4,

(i−N/2)H for i = N/4, ..., 3N/4,

(1− τ) + (i− 3N/4)h for i = 3N/4, ..., N,

(10)

where h = 4τ/N and H = 4(1 − τ)/N are the mesh lengths. If Cε > MN−1,
then the mesh becomes equally spaced and then τ = 1/2 resulting

hi = H = h = 2N−1 and C−1
ε < 4 lnN/α. (11)

On the other hand, for Cε ≤ MN−1 the mesh is piecewise-uniform and τ =
2Cε
α lnN . Here we have 2N−1 ≤ H ≤ 4N−1 and

h

Cε
=

8

α
N−1 lnN and e−α(1+xN/4)/Cε = e−α(1−x3N/4)/Cε = N−2. (12)

3.2. Hybrid difference scheme. .
Before describing the scheme, for a given mesh function y(xi) = yi, we define
the forward, backward , central difference operators D+, D− and D0 by

D+yi =
yi+1 − yi
hi+1

, D−yi =
yi − yi−1

hi
and D0yi =

yi+1 − yi−1

h̄i
,

respectively, and the second-order central difference operator δ2 by

δ2yi =
2(D+yi −D−yi)

h̄i
,

where h̄i = hi + hi+1 , for i = 1, ..., N − 1.
Further, we define the midpoint upwind schemes LNM± and the classical central

difference scheme LNC used to approximate the continuous operator L as:

LNM+yi = −Cε,i+1/2 δ2yi −Ai+1/2D
+yi + bi+1/2yi+1/2 = fi+1/2,

LNM−yi = −Cε,i−1/2 δ2yi −Ai−1/2D
−yi + bi−1/2yi−1/2 = fi−1/2,

LNC yi = −Cε,i δ2yi −AiD0yi + biyi = fi,

(13)
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where Ai±1/2 = (Ai +Ai±1)/2 and similarly for Cε,i±1/2, bi±1/2 and fi±1/2.
Now, we propose the hybrid difference scheme to solve (8), which consists of the
classical central difference scheme when Cε > MN−1, and a proper combination
of the midpoint upwind schemes in the outer region ΩC and the central difference
scheme in the layer regions ΩL and ΩR, when Cε ≤MN−1. Hence, the proposed
hybrid scheme on Ω̄N takes the following form:{

LNHUi = f̄i, for i = 1, ..., N − 1,

U0 = u0, UN = uN ,
(14)

where

LNHUi =



LNCUi, i = 1, ..., N − 1, and Cε > MN−1 ,

LNM+Ui, i = N/4, ..., N/2, and Cε ≤MN−1 ,

LNM−Ui, i = N/2 + 1, ..., 3N/4, and Cε ≤MN−1 ,

LNCUi, i = 1, .., N/4− 1, i = 3N/4 + 1, ..., N − 1, and Cε ≤MN−1 ,

and the right hand side vector f̄i as

f̄i =


fi, i = 1, ..., N − 1, and Cε > MN−1 ,

fi+1/2, i = N/4, ..., N/2, and Cε ≤MN−1 ,

fi−1/2, i = N/2 + 1, ..., 3N/4, and Cε ≤MN−1 ,

fi, i = 1, ..., N/4− 1, i = 3N/4 + 1, ..., N − 1, and Cε ≤MN−1 .

After rearranging the terms in (14), we obtain the following system of equations:

LNHUi = r−i Ui−1 + rciUi + r+
i Ui+1 = f̄i, (15)

where the coefficients are given by
r−i = −2Cε,i

hih̄i
+
Ai
h̄i
, r+

i = − 2Cε,i
hi+1h̄i

− Ai
h̄i
,

rci =
2Cε,i
hihi+1

+ bi, if LNH ≡ LNC .
(16)


r−i = −

2Cε,i+1/2

hih̄i
, r+

i = −
2Cε,i+1/2

hi+1h̄i
−
Ai+1/2

hi+1
+
bi+1/2

2

rci =
2Cε,i+1/2

hihi+1
+
Ai+1/2

hi+1
+
bi+1/2

2
, if LNH ≡ LNM+.

(17)


r−i = −

2Cε,i−1/2

hih̄i
+
Ai−1/2

hi
+
bi−1/2

2
, r+

i = −
2Cε,i−1/2

hi+1h̄i
,

rci =
2Cε,i−1/2

hihi+1
−
Ai−1/2

hi
+
bi−1/2

2
, if LNH ≡ LNM−.

(18)

In general, central difference schemes can be unstable on coarser meshes, but
we use this scheme only on the fine part of the Shishikn mesh and thus attain
stability under the mild assumption on the minimum number of mesh points N ,
considered in the following lemma:
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Lemma 3.1. Assume that

N

lnN
≥ 4
‖A‖
α

and
αN

2
≥ ‖b‖ . (19)

Then the discrete operator defined by (14) satisfies a discrete maximum principle,
i.e., if Ui and Bi are mesh functions that satisfies U0 ≤ B0, UN ≤ BN and
LNHUi ≤ LNHBi, for i = 1, ..., N − 1, then Ui ≤ Bi, for i = 0, ..., N . Hence (14)
has a unique solution.

Proof. To proof the results it is enough to show that the operator given by (15)
is an M-matrix. For this, we need to show that (15) satisfies the conditions

r−i < 0, r+
i < 0, and r−i + rci + r+

i > 0, (20)

for all the operators defined in (16)–(18). Here , we separately consider the
following two cases based on the relation between Cε and N .
Case 1: when Cε > MN−1, the mesh is uniform and we used central difference
scheme on the entire domain. Thus, for M ≥ ‖A‖ and using (11) into (16) we
get

r−i = −Cε,i
h2

+
Ai
2h

=
1

h2
(−Cε,i + 1/2Aih) ≤ 1

h2
(−Cε + ‖A‖N−1) < 0,

r+
i = −Cε,i

h2
− Ai

2h
=

1

h2
(−Cε,i − 1/2Aih) ≤ 1

h2
(−Cε + ‖A‖N−1) < 0,

and some simple calculations gives r−i + rci + r+
i = bi > 0, for all 1 ≤ i ≤ N − 1.

Case 2: when Cε ≤ MN−1, different operators are used in the layer regions
and outer region.
In the layer regions, it is apparent that r+

i < 0 and r−i < 0 , for 1 ≤ i < N/4
and 3N/4 < i ≤ N − 1 respectively. Further, using the first assumption of (19)
and (12) in to (16) we get

r−i = −Cε,i
h2

+
Ai
2h
≤ 1

h
(−Cε

h
+
Ai
2

) ≤ 1

h
(− αN

8 lnN
+
‖A‖

2
) < 0,

r+
i = −Cε,i

h2
− Ai

2h
≤ 1

h
(−Cε

h
− Ai

2
) ≤ 1

h
(− αN

8 lnN
+
‖A‖

2
) < 0,

for 1 ≤ i ≤ N/4− 1 and 3N/4 + 1 ≤ i ≤ N − 1, respectively .

In both the layer regions we simply obtain r−i + rci + r+
i = bi > 0.

Finally, in the outer regions it is straightforward that r−i < 0, for N/4 ≤ i ≤ N/2
and r+

i < 0, for N/2 + 1 ≤ i ≤ 3N/4. In addition, using H ≤ 4N−1 and the
second assumption of (19) in (17) and (18) gives us

r+
i = −

2Cε,i+1/2

hi+1h̄i
−
Ai+1/2

hi+1
+
bi+1/2

2
≤ −

2Cε,i+1/2

hi+1h̄i
− αN

4
+
‖b‖
2

< 0,

r−i = −
2Cε,i−1/2

hih̄i
+
Ai−1/2

hi
+
bi−1/2

2
≤ −

2Cε,i−1/2

hih̄i
− αN

4
+
‖b‖
2

< 0,

for N/4 ≤ i ≤ N/2 and N/2 + 1 ≤ i ≤ 3N/4, respectively .
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Moreover, for all N/4 ≤ i ≤ 3N/4, it is easy to verify that r−i + rci + r+
i > 0.

For all the cases it is verified that the operator (15) satisfies the conditions in
(20). Hence, the matrix is an M-matrix. Therefore, the solution of (14) exists
and the maximum principle easily follows. For more details the reader can refer
[13, 26]. �

Whenever, the conditions of the maximum principle are satisfied, we can take
{Bi} as a barrier function for {Ui}.

4. Convergence Analysis of The Proposed Method

In this section, we establish the ε-uniform error estimate of the hybrid scheme
(14). For this, we consider the two cases Cε > MN−1 and Cε ≤ MN−1 sepa-
rately. For both the cases, analogous to the continuous solution u, we decompose
the discrete solution U into a smooth component V and a singular component
W , such that U := V + W . Where V is the solution of the non-homogeneous
problem given by

LNHVi = f̄ , for i = 1, ..., N − 1, V0 = v(−1), VN = v(1), (21)

and W the solution of the homogeneous problem

LNHWi = 0, for i = 1, ..., N − 1, W0 = w(−1), WN = w(1). (22)

Then the error at each mesh point is

Ui − u(xi) = (Vi − v(xi)) + (Wi − w(xi)),

which implies

|Ui − u(xi)| ≤ |Vi − v(xi)|+ |Wi − w(xi)| , (23)

and so the error in the smooth and singular components of the solution can be
estimated separately.
First, to bound the errors we need to consider the truncation error of associated
with the discrete operators in (14). For any smooth function y(x), the truncation
errors LNM± applied to y at xi±1/2 and LNC applied to y at yi , becomes T1± :=

LNM±(yi) − (Ly)(xi±1/2) and T2 := LNC (yi) − (Ly)(xi) respectively, where yi :=
y(xi). Thus, the bounds are given in the following Lemma:

Lemma 4.1. Let y(x) be a smooth function defined on [−1, 1] . Then there
exists a positive constant M such that

|T1+| ≤MCε

∫ xi+1

xi−1

|y′′′(t)|dt+Mhi+1

∫ xi+1

xi

|y′′′(t)| dt,

|T1−| ≤MCε

∫ xi+1

xi−1

|y′′′(t)|dt+Mhi

∫ xi

xi−1

|y′′′(t)| dt

and

|T2| ≤Mh

∫ xi+1

xi−1

[Cε

∣∣∣y(4)(t)
∣∣∣+ |y′′′(t)|]dt, for hi = hi+1 = h.
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Proof. By repeated use of the fundamental theorem of calculus, one can obtain
the proof as in Lemma 3.3 of [13] . �

To bound the truncation error of the scheme the comparison principle of Lemma
3.1 alone is not enough, so we should also consider the following Lemma which
enable us to bound the error.

Lemma 4.2. Assume that the conditions of (19) holds and let Zi = 2 + xi for
0 ≤ i ≤ N be the mesh function for (14). Then there exists a positive constant
M such that

LNHZi ≥M, for 1 ≤ i ≤ N − 1

Proof. The proof is an easy computation. �

Sometimes the truncation error contains a term of magnitude greater than the
desired order of convergence, when this happens we shall combine Lemma 3.1
with the following results. Whenever Cε ≤ MN−1, we define the auxiliary
discrete function on the mesh elements (10) as

Si :=


2

(
1 +

ηh

Cε

)−N/4
, for i = 0, ..., 3

4N,(
1 +

ηh

Cε

)−N/4
+

(
1 +

ηh

Cε

)−(N−i)

, for i = 3
4N, ..., N.

(24)

where η is a positive constant.

Lemma 4.3. For any η > 0 the discrete function {Si} from (24), there exists
a positive constant M such that

e−η(1−xi)/Cε ≤ Si ≤

{
MN−2η/α, for i ≤ 3

4N,

M, for i > 3
4N.

(25)

and

LNHSi =



biSi, i < N/4,

bi+1/2Si, N/4 ≤ i ≤ N/2,
bi−1/2Si, N/2 < i < 3N/4,(
bi−1/2 −

η

h+H

)
Si, i = 3N/4,(

1 +
ηh

Cε

)−(N−(i−1)) [
η

Cε
(−Ai − η)−Ai

η2h

2C2
ε

]
+ biSi, i > 3N/4.

(26)

Proof. The lower bound for Si follows from the inequality e−t ≤ (1 + t)−1 which
holds true for t ≥ 0. The upper bound for Si is obvious for i > 3N/4. For
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i ≤ 3N/4, it follows from the inequality (1 + t)−1 ≤ e−t+t2 , which holds true for
t ≥ 0. Setting t := ηh/Cε and using (12), we get

Si = 2

(
1 +

ηh

Cε

)−N/4
≤ 2e

(
− ηh
Cε

+ ηh
Cε

2
)
N/4

= 2eη
h
Cε

(−1+η h
Cε

)N/4

= 2e
η 8N−1 lnN

α

(
−1+η 8N−1 lnN

α

)
N
4 = 2e

2η
α lnN(−1+ 8η

α N
−1 lnN)

= 2elnN

(
− 2η
α

+
16η2

α2 N−1 lnN

)
= 2N−

2η
α .N16 η

2

α2N
−1 lnN ≤MN−

2η
α ,

because, the sequence N16 η
2

α2N
−1 lnN is bounded for N ≥ 8. This proves the

upper bound for Si. The property (26) can be obtained by direct calculation. �

Lemma 4.4. Let S̄i := 2α
βHS3N/4 +Si be a discrete function, where {Si} is from

(24) with η = α, then there exists a positive constant M such that

0 < S̄i ≤

{
MN−1, for i ≤ 3

4N,

M, for i > 3
4N.

and

LNH S̄i ≥

{
MNe−α(1−xi)/Cε , for i ≤ 3

4N,

MC−1
ε e−α(1−xi)/Cε , for i > 3

4N.

Proof. The proof is similarly to Lemma 3.3 of [2]. �

Lemma 4.5. Let Ši := 2α
β(h+H)S3N/4 + Si be a discrete function, where {Si} is

from (24) with η = 2α, then there exists a positive constant M such that

0 < Ši ≤

{
MN−3, for i ≤ 3

4N,

M, for i > 3
4N,

Ši ≥ e−α(1−xi)/Cε for i = 0, N, and LNH Ši ≥ 0.

Proof. For the proof one can follow similarly like Lemma 3.4 of [2]. �

Remark 4.1. Because of the symmetry of the mesh and the adaptive nature of
the hybrid scheme, it is easy to derive a similar result like Lemma 4.4 and 4.5
using the mesh function {SN−i} related to the layer function e−α(1+x)/Cε .

Now we have assembled the tools for the proof of the ε-uniform convergence.

Theorem 4.6. Assume that the conditions of (19) holds true. Then the hybrid
scheme (14) satisfies the following error estimates:
Case 1: for Cε > MN−1, we have

|Ui − u(xi)| ≤MN−2 ln3N, for i = 0, ...., N. (27)

Case 2: for Cε ≤MN−1, we have

|Ui − u(xi)| ≤

{
MN−2, for N/4 ≤ i ≤ 3N/4,

MN−2 ln2N, for 0 ≤ i < N/4 and 3N/4 < i ≤ N.
(28)
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where Ui the solution of the discrete problem (14) and u(xi) is the solution of
the continuous problem (8) at the mesh points in Ω̄N .

Proof. Here we estimate the error bounds separately in cases.
Case 1: when Cε > MN−1, we employed the central difference scheme on the
entire domain. Further, we bound the error separately in V and W . First let us
compute the nodal error for the smooth part Vi. For this using Lemma 4.1 and
the bound of v from Theorem 2.5 , the truncation error is bounded by∣∣∣LNH(Vi − v(xi))

∣∣∣ ≤ Mh

∫ xi+1

xi−1

[Cε

∣∣∣v(4)(t)∣∣∣+
∣∣v′′′(t)∣∣]dt

≤ Mh2(Cε + 1) +Mh

∫ xi+1

xi−1

(e−α(1+t)/Cε + e−α(1−t)/Cε )dt

= Mh2(Cε + 1) +MhCε(e
−α(1+xi)/Cε + e−α(1−xi)/Cε ) sinh (αh/Cε)

≤ Mh2(Cε + 1) +Mh2(e−α(1+xi)/Cε + e−α(1−xi)/Cε )

≤ Mh2(Cε + 1) +Mh2 ≤Mh2,

since sinh t ≤ Mt for 0 ≤ t ≤ 1. Using h = 2N−1 on the above inequality, we
obtain the following estimate∣∣LNH(Vi − v(xi))

∣∣ ≤MN−2, for i = 1, ..., N − 1. (29)

Now, let’s take Bi := MN−2(2 + xi) as a barrier function for |Vi − v(xi)|, then
from (21) it is easy to see that |V0 − v(x0)| = 0 ≤ B0, |VN − v(xN )| = 0 ≤ BN
and (29) together with Lemma 4.2 we observe that

∣∣LNH(Vi − v(xi))
∣∣ ≤ LNHBi,

for i = 1, ..., N − 1. Thus, invoking Lemma 3.1 we get

|Vi − v(xi)| ≤MN−2, for i = 0, ..., N. (30)

Next, we analyze the error bounds for the singular component Wi. The local
truncation error is bounded in standard way as we done above. More precisely,∣∣LNH(Wi − w(xi))

∣∣ =
∣∣LNC (Wi − w(xi))

∣∣ =
∣∣(L− LNC )w(xi)

∣∣
≤ Mh

∫ xi+1

xi−1

[Cε

∣∣∣w(4)(t)
∣∣∣+ |w′′′(t)|]dt

Application of Theorem 2.5 and using (11) on the above inequality gives∣∣LNH(Wi − w(xi))
∣∣ ≤Mh2C−3

ε ≤MN−2 ln3N, for i = 1, ..., N − 1.

Now, arguing similarly like the smooth part we obtain

|Wi − w(xi)| ≤MN−2 ln3N, for i = 0, ..., N. (31)

Using (30) and (31) in to (23) gives the required result of the first case (27).

Case 2: for Cε ≤MN−1, the mesh becomes piecewise-uniform and we employed
a combinations of mid point upwind and central difference schemes. Like that
of the previous case we bound the error separately in V and W . First, let us
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compute the error for the smooth part Vi. Similarly like the smooth part of Case
1, the truncation error becomes

∣∣LNH((Vi − v(xi))
∣∣ =


∣∣(Lv)xi+1/2 − LNM+v(xi)

∣∣ , for i = N/4, ..., N/2,∣∣(Lv)xi−1/2 − LNM−v(xi)
∣∣ , for i = N/2 + 1, ..., 3N/4,∣∣(L− LNC )v(xi)

∣∣ , Otherwise,

then using Lemma 4.1 and the bound for v(x) from Theorem 2.5, we get

∣∣LNH((Vi − v(xi))
∣∣ ≤


M(Cε + hi+1)(hi + hi+1), for i = N/4, ..., N/2,

M(Cε + hi)(hi + hi+1), for i = N/2 + 1, ..., 3N/4,

Mh2, Otherwise.

Since, Cε ≤ MN−1 and hi ≤ 4N−1, then using these in the above inequality
gives us∣∣LNH(Vi − v(xi))

∣∣ ≤MN−2, for i = 1, ..., N − 1. (32)

Now, arguing similarly like the smooth part of the previous case we obtain

|Vi − v(xi)| ≤MN−2, for i = 0, ..., N. (33)

Next, we analyze the error bounds for the singular component Wi. A different
argument is used to bound |W − w| in the outer and layer regions. In the outer
region Ω̄C , both W and w are small, and by the triangle inequality we have

|(W − w)(xi)| ≤ |W (xi)|+ |w(xi)| , (34)

so, it suffices to bound W (xi) and w(xi) separately. Theorem 2.5 for i =
N/4, ..., 3N/4 gives

|w(xi)| ≤M(e−α(1+xi)/Cε+e−α(1−xi)/Cε) ≤M(e−α(1+xN/4)/Cε+e−α(1−x3N/4)/Cε).

Then using (12) in the above inequality we get

|w(xi)| ≤MN−2, for i = N/4, ..., 3N/4. (35)

To bound W (xi), we set Bi := M1(N−1S̄i + N−1 ¯SN−i + Ši + ˇSN−i) for i =
0, ..., N , where {S̄i} and {Ši} are from Lemma 4.4 and 4.5, respectively. Now
for sufficiently large M1, using Theorem 2.5 in (22) and Lemma 4.5 we get

|W0| = |w(−1)| ≤M(e−α(1+x0)/Cε + e−α(1−x0)/Cε) ≤M1(Š0 + ŠN ) ≤ B0, (36)

and

|WN | = |w(1)| ≤M(e−α(1+xN )/Cε +e−α(1−xN )/Cε) ≤M1(ŠN + Š0) ≤ BN . (37)

Further, for i = 1, ..., N − 1 the property of the discrete operator from Lemma
4.4 and 4.5 implies

LNHBi ≥


M1(MC−1

ε N−1e−α(1+xi)/Cε + e−α(1−xi)/Cε), for i = 1, ..., N/4− 1,

M1(e
−α(1+xi)/Cε + e−α(1−xi)/Cε), for i = N/4, ..., 3N/4,

M1(e
−α(1+xi)/Cε +MC−1

ε N−1e−α(1−xi)/Cε), for i = 3N/4 + 1, ..., N − 1,
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since Cε ≤ MN−1 implies MC−1
ε N−1 ≥ 1, using this in the above inequality

we get

LNHBi ≥M1(e−α(1+xi)/Cε +e−α(1−xi)/Cε) ≥ 0 = LNH |Wi| , 1 ≤ i ≤ N−1. (38)

From (36)–(38) we observe that Bi is a barrier function for Wi for M1 sufficiently
large. Therefore, by the discrete maximum principle of Lemma 3.1 we get

|Wi| ≤ Bi, for i = 0, ..., N. (39)

In particular in the coarser region, (39) and Lemma 4.4 and 4.5 together imply
that

|Wi| ≤ Bi ≤MN−2, for i = N/4, ..., 3N/4. (40)

Therefore, combining (34), (35) and (40) we get

|Wi − w(xi)| ≤MN−2, for i = N/4, ..., 3N/4. (41)

It remains to prove the bound for the singular component in the layer regions Ω̄L
and Ω̄R. First we estimate the bound in Ω̄R. Since we employ central difference
scheme in Ω̄R, so as we did for the smooth component we use the truncation
error to bound the error. Thus, from Lemma 4.1 and Theorem 2.5 we get∣∣LNH(Wi − w(xi))

∣∣ ≤ Mh

∫ xi+1

xi−1

[Cε
∣∣w4(t)

∣∣+ |w′′′(t)|]dt

≤ MhC−3
ε

∫ xi+1

xi−1

e−α(1−t)/Cεdt

= MhC−2
ε (e−α(1−xi+1)/Cε − e−α(1−xi−1)/Cε)

= MhC−2
ε e−α(1−xi)/Cε sinh (αh/Cε).

Clearly, the first assumption of (19) implies αh/Cε ≤ 1 and since sinh t ≤ Mt
for 0 ≤ t ≤ 1, so sinh(αh/Cε) ≤Mαh/Cε. Thus, for i = 3N/4 + 1, ..., N − 1 the
above inequality is reduced to∣∣LNH(Wi − w(xi))

∣∣ ≤M (
h

Cε

)2

C−1
ε e−α(1−xi)/Cε . (42)

Further, taking i = 3N/4 in (42), we get
∣∣W3N/4 − w(x3N/4)

∣∣ ≤MN−2, and for
i = N the boundary condition in (22) gives |WN − w(xN )| = 0. Now let

Bi := M2

(
N−2 +

(
h

Cε

)2

S̄i

)
, for i = 3N/4, ..., N,

be the mesh function, where {S̄i} is from Lemma 4.4. If M2 is chosen large
enough, our estimates shows that Bi is a barrier function for |Wi − w(xi)|. So
by using the discrete maximum principle of Lemma 3.1 and Lemma 4.4, together
with (12) we get

|Wi − w(xi)| ≤MN−2 ln2N, for i = 3N/4, ..., N. (43)
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Similarly the proof follows for the left boundary layer region, Ω̄L i.e.,

|Wi − w(xi)| ≤MN−2 ln2N, for i = 0, ..., N/4. (44)

Finally, properly using (33), (41), (43) and (44) in to (23) gives the required
bound of the second case (28), which completes the proof. �

5. Test Problems and Numerical Results

To demonstrate the applicability of the proposed method we have implemented
it on two problems of the form (1)–(2). Since the exact solution for the problems

are not available, the point-wise errors (êNi ) and maximum absolute errors (ÊN )
are calculated by using the double mesh principle given by

êNi = |UN (xi)− U2N (xi)| , and ÊN = max
i
{êNi }.

where UN and U2N denotes the numerical solutions obtained using N and 2N
meshes points respectively. Further, we determine the corresponding rate of
convergence by

R̂N = log2
(ÊN/Ê2N ).

Example 5.1. Consider the following homogeneous SPDDE with a turning
point:

−εy′′(x) + xy′(x) + y(x− δ) = 0, x ∈ (−1, 1)

y(x) = 1, −1− δ ≤ x ≤ −1, y(1) = 1.

Example 5.2. Consider the following non-homogeneous SPDDE with a turning
point:

−εy′′(x)− 2(1− 2x)y′(x) + 4y(x− δ) = 4(1− 4x), x ∈ (0, 1)

y(x) = 1, −δ ≤ x ≤ 0, y(1) = 1.

Figure 1. Plot of the solutions of Example 5.1 for ε = 0.1
and N = 128.



128 Wondwosen Gebeyaw, Awoke Andargie, and Getachew Adamu.

Figure 2. Plot of the solutions of Example 5.2 for ε = 0.05
and N = 128.

Table 1. Result of Example 5.1 (Maximum point wise error)
for δ = 0.5 ∗ ε.

ε↓/N → 32 64 128 256 512 1024

1.00 1.90E − 04 4.74E − 05 1.19E − 05 2.96E − 06 7.41E − 07 1.85E − 07
0.50 3.59E − 04 8.98E − 05 2.24E − 05 5.61E − 06 1.40E − 06 3.51E − 07

10−1 6.62E − 03 1.66E − 03 4.10E − 04 1.03E − 04 2.57E − 05 6.42E − 06

10−2 1.81E − 02 6.12E − 03 1.99E − 03 6.70E − 04 2.10E − 04 6.48E − 05
10−3 1.89E − 02 6.38E − 03 2.12E − 03 6.88E − 04 2.17E − 04 6.61E − 05

10−4 1.90E − 02 6.41E − 03 2.13E − 03 6.92E − 04 2.18E − 04 6.74E − 05
10−5 1.90E − 02 6.41E − 03 2.13E − 03 6.92E − 04 2.19E − 04 6.74E − 05

10−6 1.90E − 02 6.41E − 03 2.13E − 03 6.92E − 04 2.19E − 04 6.74E − 05

10−7 1.90E − 02 6.41E − 03 2.13E − 03 6.92E − 04 2.19E − 04 6.74E − 05
EN 1.90E − 02 6.41E − 03 2.13E − 03 6.92E − 04 2.19E − 04 6.74E − 05

Table 2. Result of Example 5.1 (Rate of convergence) for δ =
0.5 ∗ ε.

ε↓/N → 32 64 128 256 512 1024
1.00 2.0000 2.0000 2.0000 2.0000 2.0000 2.0001
0.50 2.0003 2.0002 2.0000 2.0000 2.0000 2.0000
10−1 2.0003 2.0121 1.9982 2.0008 2.0002 2.0000
10−2 1.5677 1.6192 1.5728 1.6707 1.6989 1.7256
10−3 1.5700 1.5915 1.6217 1.6628 1.7165 1.6949
10−4 1.5699 1.5916 1.6212 1.6627 1.6971 1.7251
10−5 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249
10−6 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249
10−7 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249
RN 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249
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Table 3. Result of Example 5.2 (Maximum point wise error)
for δ = 0.5 ∗ ε.

ε↓/N → 32 64 128 256 512 1024
1.00 9.78E − 04 2.45E − 04 6.12E − 05 1.53E − 05 3.83E − 06 5.57E − 07
0.50 1.39E − 03 3.48E − 04 8.71E − 05 2.18E − 05 5.44E − 06 1.36E − 06

10−1 1.16E − 02 3.41E − 03 8.48E − 04 2.12E − 04 5.29E − 05 1.32E − 05

10−2 5.19E − 02 1.76E − 02 5.86E − 03 1.89E − 03 6.08E − 04 1.87E − 04

10−3 5.66E − 02 1.91E − 02 6.33E − 03 2.06E − 03 6.50E − 04 2.00E − 04

10−4 5.71E − 02 1.92E − 02 6.38E − 03 2.07E − 03 6.55E − 04 2.02E − 04

10−5 5.71E − 02 1.92E − 02 6.38E − 03 2.08E − 03 6.56E − 04 2.02E − 04

10−6 5.71E − 02 1.92E − 02 6.39E − 03 2.08E − 03 6.56E − 04 2.02E − 04

10−7 5.71E − 02 1.92E − 02 6.39E − 03 2.08E − 03 6.56E − 04 2.02E − 04

EN 5.71E − 02 1.92E − 02 6.39E − 03 2.08E − 03 6.56E − 04 2.02E − 04

Table 4. Result of Example 5.2 (Rate of convergence) for δ =
0.5 ∗ ε.

ε↓/N → 32 64 128 256 512 1024
1.00 1.9982 1.9993 1.9999 2.0000 2.0000 2.0000
0.50 1.9995 1.9999 1.9999 2.0000 2.0000 2.0000
10−1 1.7644 2.0085 2.0021 2.0004 1.9999 2.0000
10−2 1.5578 1.5892 1.6313 1.6387 1.6983 1.7257
10−3 1.5689 1.5918 1.6212 1.6629 1.6969 1.7312
10−4 1.5698 1.5916 1.6211 1.6627 1.6971 1.7251
10−5 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249
10−6 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249
10−7 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249
RN 1.5699 1.5916 1.6211 1.6626 1.6969 1.7249

Table 5. Comparision of Maximum errors for Example 5.2
with δ = 0.5 ∗ ε.

N = 256 N = 512
Method of Present Method of Present

ε↓ [25] Method [25] Method
2−2 4.19E − 03 2.07E − 05 2.12E − 03 5.17E − 06
2−4 2.84E − 02 7.50E − 04 1.47E − 02 1.87E − 04
2−8 5.22E − 012 2.01E − 03 3.09E − 02 6.35E − 04
2−12 5.27E − 02 2.07E − 03 3.12E − 02 6.54E − 04
2−16 5.27E − 02 2.08E − 03 3.12E − 02 6.56E − 04
2−20 5.27E − 02 2.08E − 03 3.12E − 02 6.56E − 04
EN 5.27E − 02 2.08E − 03 3.12E − 02 6.56E − 04

6. Discussion

In this article, Singularly perturbed delay differential turning point problems
exhibiting twin boundary layers which contains a small delay parameter δ = o(ε)
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on the reaction term are considered. To tackle the delay parameter a second
order Taylor’s series expansion is employed. An efficient fitted finite difference
scheme on an appropriate piecewise-uniform Shishkin mesh is developed for the
problem. The proposed method is analyzed for stability and convergence, and it
has been shown that the method is ε-uniformly convergent with an almost second
order rate of convergence. Further, two numerical experiments are examined to
support the theoretical results and to illustrate the effect of the small shift on
the layer behavior of the solutions.
Tables 1-4 presents the computed maximum point wise error and the rate of
convergence for the considered examples and the comparison of maximum error
with the existing method is also given in Table 5. The results demonstrate that
the method is robust i.e., converges for every ε and the maximum point wise
error and the rate of convergence stabilizes as ε→ 0 for each appropriate N . It
is also observed that the proposed method has a superior order of convergence
than the existing fitted mesh method in [25] employed for the same problem.
Furthermore, the numerical results clearly support the theoretical error bounds
and order of convergence derived on this paper. In addition, to demonstrate the
effect of the small negative shift on the behavior of the solution graphs of the
considered problems are plotted in Figures 1-2 for different values of δ. It is
observed that the boundary layers are maintained but layer get shifted as delay
argument changes.
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