• 제목/요약/키워드: Differential analysis

검색결과 4,454건 처리시간 0.036초

임펠러 타입 계량 밸브 입·출구 차압에 따른 유동해석에 관한 연구 (A Study on the Flow Analysis of Impeller type Measuring Valve according to Differential Pressure at Inlet and Outlet)

  • 김태준;이중섭;이치우
    • 한국산업융합학회 논문집
    • /
    • 제26권3호
    • /
    • pp.381-387
    • /
    • 2023
  • This study conducts the flow analysis on the basis of the impeller RPM of water measuring valve and differential pressure at valve inlet and outlet. The software used for the flow analysis is STAR-CCM+. In terms of the structure of the measuring valve, it has an impeller installed inside, and a metering chamber has inlet and outlet holes. The flow analysis on the water measuring valve drew the following conclusions: The flow rate and flow coefficient distribution according to the impeller RPM and differential pressure were on the linear increase. Regarding the flow field in the valve, the increased differential pressure had the highest velocity distribution, and complex flow field was generated in the measuring chamber. In particular, since the path between the inlet and outlet holes in the measuring chamber and the valve body was narrow, there was a section that had flow field interference. Given that, it showed the feature of the valve used for water measuring on the basis of the impeller RPM.

Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.201-217
    • /
    • 2007
  • A harmonic type differential quadrature approach for nonlinear dynamic analysis of multi-degree-of-freedom systems has been developed. A series of numerical examples is conducted to assess the performance of the HDQ method in linear and nonlinear dynamic analysis problems. Results are compared with the existing solutions available from other analytical and numerical methods. In all cases, the results obtained are quite accurate.

Analysis of differential non-linearity of successive approxination ADC

  • Yamada, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.943-946
    • /
    • 1989
  • The channel irregularity of Successive Approximation ADC is very large in comparison with other type of ADCs. This characteristic makes it impossible to apply the Successive Approximation ADC to the field of radiation pulse height analysis or the measurement of probability density function. In this paper, an analysis of differential non-linearity of this ADC-is presented. It is made clear that the small deviation of resistance causes very large differential non-linearity.

  • PDF

Post-buckling Behavior of Tapered Columns under a Combined Load using Differential Transformation

  • Yoo, Yeong Chan
    • Architectural research
    • /
    • 제8권1호
    • /
    • pp.47-56
    • /
    • 2006
  • In this research, the analysis of post-buckling behavior of tapered columns has been performed under a combined load of uniformly distributed axial load along the length and concentric axial load at free end by solving the nonlinear differential equation with the differential transformation technique. The buckling load at various slopes at free end of column is calculated and the results of the analysis using the differential transformation technique is verified with those of previous studies. It is also shown through the results that the buckling load of sinusoidal tapered columns is largest, the linear is second largest, and the parabolic is small in the all ranges of slopes at free end and the deflection of parabolic tapered columns in the x coordinates is largest, the sinusoidal is second largest, and the linear is smallest in the range of slope 0 to 140 degrees at free end. However, when the range of the slope is 160 to 176 degrees at the free end, the deflection of sinusoidal tapered columns in the x coordinates is largest, the linear is second largest, and the parabolic is smallest. In addition, for the linear tapered column, the buckling load increases along with the flexural stiffness ratio. Also, for the parabolic and the sinusoidal tapered column, the buckling loads increase and decrease as the flexural ratios increase in the range of flexural stiffness ratio n = 1.0 to n = 2.0. Through this research, it is verified that the differential transformation technique can be applied to solve the nonlinear differential equation problems, such as analysis of post-buckling behavior of tapered columns. It is also expected that the differential transformation technique apply to various more complicated problems in future.

건축물 제연시스템의 송풍기에 대한 해석기술 개발 (Development of Analysis Technology on Fan in Pressure Differential System for Smoke Management)

  • 김정엽;김지석
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2009년도 춘계학술논문발표회 논문집
    • /
    • pp.352-357
    • /
    • 2009
  • The fact that the major cases of life casualties are from smoke in the fire accidents and the expected steep increase of skyscrapers, huge spaces, multiplexes and huge scaled underground spaces demand establishment of efficient smoke countermeasure. The core technology for development of smoke management system is analysis tool of fan used in pressure differential system. The development of analysis technology on sirroco-typed fan using experimental and numerical methods are carried out to evaluate the features and performance of fan used in pressure differential systems.

  • PDF

고차압 제어 버터플라이 밸브의 오리피스 형상에 관한 연구 (A Study on the Orifice Shape of High-Differential Pressure Control Butterfly Valve)

  • 윤익상;진정인;류성기
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.107-114
    • /
    • 2021
  • Butterfly valves are used in various industries to control the flow rate, flow direction, pressure, and temperature. These are gaining popularity in the field of plant industry to enable high-differential pressure because of their low maintenance costs and ease of installation. This study presents a numerical analysis method to analyze changes in the flow characteristics of a high-differential pressure control butterfly valve based on the location and shape of the orifice. The numerical analysis was conducted using a commercial CFD program. The analysis results show a correlation between the orifice shape and cavitation phenomenon.

추계론적 유한요소법을 이용한 지반의 부등침하 신뢰도 해석 (Reliability Analysis of Differential Settlement Using Stochastic FEM)

  • 이인모;이형주
    • 한국지반공학회지:지반
    • /
    • 제4권3호
    • /
    • pp.19-26
    • /
    • 1988
  • 본 논문에서는 기초지반의 부등침하를 해석하기 위하여 추계론적 수치해석 방법을 사용하였다. 부등침하는 토질탄성계수의 공간적 변화와 밀접한 관계를 갖고 있다. Kriging 이론은 탄성계수의 공간적 변화를 설명하기 위하여 사용되었다. 이 방법은 선형최적불편추정기법으로 제한된 자료로 부터 최소의 분산을 가진 추정값을 구할 수 있다. 추계론적 유한요소법을 이용하여 일차근사 2차모멘트 기법으로 변위의 평균값과 분산값 그리고 공분산값을 구한다. 최종적으로 부등침하의 신뢰도모델이 제시되었다. 해석결과 두 기초사이의 거리와 탄성계수의 수평방향 변동거리가 거의 같을 때 최대부 등침하량이 일어난다는 것과 이 때 부등침하량이 허용간을 넋을 확률이 상당히 크다는 것이 밝혀 졌다.

  • PDF

Free vibration analysis of cracked thin plates using generalized differential quadrature element method

  • Shahverdi, Hossein;Navardi, Mohammad M.
    • Structural Engineering and Mechanics
    • /
    • 제62권3호
    • /
    • pp.345-355
    • /
    • 2017
  • The aim of the present study is to develop an elemental approach based on the differential quadrature method for free vibration analysis of cracked thin plate structures. For this purpose, the equations of motion are established using the classical plate theory. The well-known Generalized Differential Quadrature Method (GDQM) is utilized to discretize the governing equations on each computational subdomain or element. In this method, the differential terms of a quantity field at a specific computational point should be expressed in a series form of the related quantity at all other sampling points along the domain. However, the existence of any geometric discontinuity, such as a crack, in a computational domain causes some problems in the calculation of differential terms. In order to resolve this problem, the multi-block or elemental strategy is implemented to divide such geometry into several subdomains. By constructing the appropriate continuity conditions at each interface between adjacent elements and a crack tip, the whole discretized governing equations of the structure can be established. Therefore, the free vibration analysis of a cracked thin plate will be provided via the achieved eigenvalue problem. The obtained results show a good agreement in comparison with those found by finite element method.

할 일들의 순서 선택이 자유로운 증가분 기반 고정점 계산 알고리즘 (A Differential Fixpoint Evaluation Algorithm for Arbitrary Worklist Scheduling)

  • 안준선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권8호
    • /
    • pp.808-818
    • /
    • 2005
  • 본 연구에서는 증가분 기반 계산을 사용한 고정점 계산 방법을 제시하고 이에 기반한 새로운 워크리스트 알고리즘을 제시한다. 제시된 방법은 기존의 증가분 기반 계산과 달리 배분 법칙을 만족하지 않는 계산 시스템에도 효과적으로 적용될 수 있으며 증가분 기반 계산으로 인한 제약 조건을 만족하면서도 다양한 워크리스트 스케줄링 방법을 사용할 수 있는 장점을 가지고 있다. 본 연구의 결과를 프로그램 정적 분석 방법인 요약 해석 방법에 적용하였으며, 이를 사용하여 상수 및 이명 분석과 메모리 생존 분석을 구현하였다. 제시된 실험 결과는 본 연구의 방법이 계산을 실제적으로 절약할 수 있음과, 적절한 워크리스트 스케줄링 방법의 사용이 증가분 기반 계산에서도 중요함을 보여준다.

Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.221-238
    • /
    • 2008
  • Numerical solution to buckling analysis of beams and columns are obtained by the method of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for various support conditions considering the variation of flexural rigidity. The solution technique is applied to find the buckling load of fully or partially embedded columns such as piles. A simple semi- inverse method of DQ or HDQ is proposed for determining the flexural rigidities at various sections of non-prismatic column ( pile) partially and fully embedded given the buckling load, buckled shape and sub-grade reaction of the soil. The obtained results are compared with the existing solutions available from other numerical methods and analytical results. In addition, this paper also uses a recently developed technique, known as the differential transformation (DT) to determine the critical buckling load of fully or partially supported heavy prismatic piles as well as fully supported non-prismatic piles. In solving the problem, governing differential equation is converted to algebraic equations using differential transformation methods (DT) which must be solved together with applied boundary conditions. The symbolic programming package, Mathematica is ideally suitable to solve such recursive equations by considering fairly large number of terms.