• Title/Summary/Keyword: Differential analysis

Search Result 4,454, Processing Time 0.027 seconds

Thermoelastic analysis of rectangular plates with variable thickness made of FGM based on TSDT using DQ method

  • Amiri, Majid;Loghman, Abbas;Arefi, Mohammad
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.667-681
    • /
    • 2022
  • This paper presents a thermoelastic analysis of variable thickness plates made of functionally graded materials (FGM) subjected to mechanical and thermal loads. The thermal load is applied to the plate as a temperature difference between the top and bottom surfaces. Temperature distribution in the plate is obtained using the steady-state heat equation. Except for Poisson's ratio, all mechanical properties of the plate are assumed to vary linearly along the thickness direction based on the volume fractions of ceramic and metal. The plate is resting on an elastic foundation modeled based on the Winkler foundation model. The governing equations are derived based on the third-order shear deformation theory (TSDT) and are solved numerically for various boundary conditions using the differential quadrature method (DQM). The effects of various parameters on the stress distribution and deflection of the plate are investigated such as the value of thermal and mechanical loads, volume fractions of ceramic and metal, and the stiffness coefficients of the foundation.

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).

Elasticity solution and free vibrations analysis of laminated anisotropic cylindrical shells

  • Shakeri, M.;Eslami, M.R.;Yas, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.181-202
    • /
    • 1999
  • Dynamic response of axisymmetric arbitrary laminated composite cylindrical shell of finite length, using three-dimensional elasticity equations are studied. The shell is simply supported at both ends. The highly coupled partial differential equations are reduced to ordinary differential equations (ODE) with variable coefficients by means of trigonometric function expansion in axial direction. For cylindrical shell under dynamic load, the resulting differential equations are solved by Galerkin finite element method, In this solution, the continuity conditions between any two layer is satisfied. It is found that the difference between elasticity solution (ES) and higher order shear deformation theory (HSD) become higher for a symmetric laminations than their unsymmetric counterpart. That is due to the effect of bending-streching coupling. It is also found that due to the discontinuity of inplane stresses at the interface of the laminate, the slope of transverse normal and shear stresses aren't continuous across the interface. For free vibration analysis, through dividing each layer into thin laminas, the variable coefficients in ODE become constants and the resulting equations can be solved exactly. It is shown that the natural frequency of symmetric angle-ply are generally higher than their antisymmetric counterpart. Also the results are in good agreement with similar results found in literatures.

Performance analysis of TR, DTR and PRM UWB systems in frequency selective channel (주파수 선택적 채널에서의 TR, DTR과 PRM UWB 통신 시스템 성능분석)

  • Woo Seon-Keol;Choi Ho-Seon;Yang Hoon-Gee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.45-54
    • /
    • 2006
  • The UWB signal distortion in frequency selective channel has made it difficult to implement the channel estimator and the synchronizer of the UWB receiver. In this paper, we examine the performances of TR(Transmitted Reference) and DTR(Differential TR) UWB which use either reference pulse or differential method to estimate the channels. we also propose a FSK-based PRM(Pulse Repetition Modulation) UWB system as an another form of UWB system which is advantageous in frequency selective channel. Finally, resorting to statistical analysis, we examine the noise effect due to noisy reference at an auto-correlation(AcR) receiver. moreover, SNR dependance of the integration length in the AcR receiver is also investigated.

  • PDF

Reconsideration of the Azimuth Functions in the Analysis of Heat Transfer by the Method of Similarity Transformations (상사변환법에 의한 열전달해석에 있어서 방위함수의 재고)

  • ;;Son, Byung Jin;Yi, Hyun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.3
    • /
    • pp.91-97
    • /
    • 1979
  • Boundary layer equations (partial differential equations) can be transformed to ordinary diffential equations with constant coeffieients in terms of similarity transformed to ordinary differential equations with constant coeffieients in terms of similarity transformations in the heat tranfer analysis on the surface of any axiaymmetric boiles. The azimuth functions can not be uniquely determined because of the singular behavior at the stagnation point(X=0.deg.).In spite of the azimuth functions behaving singularly, many of researchers have analyzed the heat transfer problem on a horizontal chlinder or a sphere, supposing the set of solutions( $H_{1}$ & G$_{1}$) of being yieled from the simple differential equation to be unique solution of therazimuth functions. In order to ascertain whether mathematical incompatibility as mentioned above can be admitted in the viewpoint of enginerring or not, condensation heat transfer coefficients on a sphere are computed for all azimuth functions( $H_{1}$ G$_{1}$ & $H_{2}$ G$_{2}$) and comparisons with the experimental result are discussed.

Investigation of Bracket Deflection Influence on Structural Safety of Scaffold System (브라켓의 변위가 비계 구조 안전성에 미치는 영향 분석)

  • Kim, Dong Hyun;Lee, Hyung Do;Won, Jeong-Hun;Jung, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.66-73
    • /
    • 2017
  • This study examined the structural behavior of bracket scaffolds reflecting the influence of bracket's deflection. Even though the supporting condition of bracket scaffolds is different to that of general earth-supported scaffolds, there is no clear standards about the installation of bracket scaffolds. To compare the structural behaviors of the earth-supported scaffolds without settlements in columns and those of bracket scaffolds installed on the bracket structure, the finite element analysis was performed. The results show that the differential settlement between the scaffold columns installed on the bracket was occurred due to the deflection of the bracket. The differential settlement gave birth to remarkable secondary stress to the scaffold columns. It is resonable to locate all scaffold columns on the brackets, and if unavoidable situation is faced at a site, the horizontal members should not placed alone without columns on the brackets. Moreover, the structural analysis should be performed to ensure structural safety of bracket scaffolds before installation. In addition, the location of wall connection to the structures is recommended to the scaffolds columns installed on the brackets.

A Finite Element Analysis for a Rotating Cantilever Beam (회전 외팔보의 유한요소 해석)

  • Jeong, Jin-Tae;Yu, Hong-Hui;Kim, Gang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1730-1736
    • /
    • 2001
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modeling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are (derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, two weak forms are derived: one is for the chordwise motion and the other is fur the flptwise motion. The weak farms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviors of the natural frequencies are investigated for the variation of the rotating speed.