• Title/Summary/Keyword: Differential analysis

Search Result 4,454, Processing Time 0.029 seconds

A Finite Element Analysis for a Rotating Cantilever Beam (회전 외팔보에서의 유한요소 연구)

  • Chung, Jin-Tai;Yoo, Hong-Hee;Kim, Gang-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.529-534
    • /
    • 2000
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modelling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, are derived two weak forms: one is for the chordwise motion and the other is for the flapwise motion. The weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviours of the natural frequencies are investigated for the variation of the rotating speed.

  • PDF

On the performance of heat absorption/generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid

  • Hayat, Tasawar;Khan, Muhammad Ijaz;Waqas, Muhammad;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1645-1653
    • /
    • 2017
  • This investigation explores the thermally stratified stretchable flow of an Oldroyd-B material bounded by a linear stretched surface. Heat transfer characteristics are addressed through thermal stratification and heat generation/absorption. Formulation is arranged for mixed convection. Application of suitable transformations provides ordinary differential systems through partial differential systems. The homotopy concept is adopted for the solution of nonlinear differential systems. The influence of several arising variables on velocity and temperature is addressed. Besides this, the rate of heat transfer is calculated and presented in tabular form. It is noticed that velocity and Nusselt number increase when the thermal buoyancy parameter is enhanced. Moreover, temperature is found to decrease for larger values of Prandtl number and heat absorption parameter. Comparative analysis for limiting study is performed and excellent agreement is found.

Differential Fault Analysis for Round-Reduced AES by Fault Injection

  • Park, Jea-Hoon;Moon, Sang-Jae;Choi, Doo-Ho;Kang, You-Sung;Ha, Jae-Cheol
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.434-442
    • /
    • 2011
  • This paper presents a practical differential fault analysis method for the faulty Advanced Encryption Standard (AES) with a reduced round by means of a semi-invasive fault injection. To verify our proposal, we implement the AES software on the ATmega128 microcontroller as recommended in the standard document FIPS 197. We reduce the number of rounds using a laser beam injection in the experiment. To deduce the initial round key, we perform an exhaustive search for possible key bytes associated with faulty ciphertexts. Based on the simulation result, our proposal extracts the AES 128-bit secret key in less than 10 hours with 10 pairs of plaintext and faulty ciphertext.

Small-Signal Analysis of a Differential Two-Stage Folded-Cascode CMOS Op Amp

  • Yu, Sang Dae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.768-776
    • /
    • 2014
  • Using a simplified high-frequency small-signal equivalent circuit model for BSIM3 MOSFET, the fully differential two-stage folded-cascode CMOS operational amplifier is analyzed to obtain its small-signal voltage transfer function. As a result, the expressions for dc gain, five zero frequencies, five pole frequencies, unity-gain frequency, and phase margin are derived for op amp design using design equations. Then the analysis result is verified through the comparison with Spice simulations of both a high speed op amp and a low power op amp designed for the $0.13{\mu}m$ CMOS process.

Experiments on Performance of Fan used in Pressure Differential System for Smoke Management (급기가압 제연시스템의 송풍기에 대한 실규모 성능평가 실험)

  • Kim, Jung-Yup
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.458-462
    • /
    • 2008
  • The fact that the major cases of life casualties are from smoke in the fire accidents and the expected steep increase of skyscrapers, huge spaces, multiplexes and huge scaled underground spaces demand establishment of efficient smoke countermeasure. The core technology for development of smoke management system is analysis tool of fan used in pressure differential system. The experiments on performance of sirroco-typed fan are carried out to evaluate the features of fan and present the experimental data for numerical analysis.

  • PDF

Behavior of wall panels in industrial buildings caused by differential settlements

  • Fernandez, Suyai;Jaca, Rossana C.;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.443-460
    • /
    • 2015
  • This paper presents the analysis of mechanical behavior of metal wall panels of storehouses and industrial buildings subjected to differential settlements. The storehouses considered are representative of those used in the agricultural activity. A small-scale model was built and tested in order to have evidence of the behavior and to validate computational models. The numerical investigation is carried out through finite element analysis using a general-purpose software, by modeling buildings with different geometries and evaluating different settlements of the ground. To obtain an adequate model, geometric non-linearity has to be taken into account. Models that represent the most usual geometric typologies were investigated under support settlements. The deflected shape of the wall panel and the relationship between the horizontal displacements and the settlement of the foundations are evaluated. The results show that there are large out-of-plane displacements caused by settlements that would be admitted by design recommendations.

Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement

  • Yas, M.H.;Garmsiri, K.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency.

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

High-Frequency Equivalent Circuit Model for Differential Mode Noise Analysis of DC-DC Buck Converter (DC-DC 벅 컨버터의 차동모드 노이즈 분석을 위한 고주파 등가회로 모델)

  • Shin, Juhyun;Kim, Woojung;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.473-480
    • /
    • 2020
  • In this paper, we proposed a high frequency equivalent circuit considering parasitic impedance components for differential noise analysis on the input stage during DC-DC buck converter switching operation. Based on the proposed equivalent circuit model, we presented a method to measure parasitic impedance parameters included in DC bus plate, IGBT, and PCB track using the gain phase method of a network analyzer. In order to verify the validity of this model, a DC-DC prototype consisting of a buck converter, a signal analyzer, and a LISN device, and then resonance frequency was measured in the frequency range between 150 kHz and 30 MHz. The validity of the parasitic impedance measurement method and the proposed equivalent model is verified by deriving that the measured resonance frequency and the resonance frequency of the proposed high frequency equivalent model are the same.