• Title/Summary/Keyword: Differential Value

Search Result 1,111, Processing Time 0.019 seconds

An Optimization Model for Concurring Landscape Detailed Design with Final Products (조경공사의 설계와 시공일치를 위한 최적 모형)

  • 이용훈;이기의;서옥하
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.105-116
    • /
    • 2000
  • The purpose of this paper is to minimize differences between landscape detailed design (hereafter 'design') and final landscape construction products in working sites (hereafter 'products'). Ten landscape sites constructed in recent two years were selected to examine the differences. Differences in quantities and quality between design and products were surveyed and the results were analyzed with the 'differential analysis method'. The method employed in this paper can be used as an optimization model to minimize the differences between design and products. This paper suggests that every landscape field should mark less than 13.672% calculated from the 10% of total amount for excellent construction products. This should be approved by the president, according to the Clause 20 of General Conditions of the Contract, divided by the ratio of quantities affecting mainly he average Difference in Value between Design and Construction(DVDC). This value can be the critical point from the differential analysis method for the optimal maximum DVDC between landscape design and final landscape construction products in fields.

  • PDF

Students' Conceptual Development of Eigenvalue and Eigenvector in Reformed Differential Equation Course (개혁 미분 방정식 수업에 기반한 학습자의 고유치 고유벡터 개념 발생 및 이해)

  • Shin Kyunghee
    • Journal for History of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.133-152
    • /
    • 2004
  • In this paper, we discuss students' conceptual development of eigen value and eigen vector in differential equation course based on reformed differential equation using the mathematical model of mass spring according to historico-generic principle. Moreover, in setting of small group interactive learning, we investigate the students' development of mathematical attitude.

  • PDF

Development of a meshless finite mixture (MFM) method

  • Cheng, J.Q.;Lee, H.P.;Li, Hua
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.671-690
    • /
    • 2004
  • A meshless method with novel variation of point collocation by finite mixture approximation is developed in this paper, termed the meshless finite mixture (MFM) method. It is based on the finite mixture theorem and consists of two or more existing meshless techniques for exploitation of their respective merits for the numerical solution of partial differential boundary value (PDBV) problems. In this representation, the classical reproducing kernel particle and differential quadrature techniques are mixed in a point collocation framework. The least-square method is used to optimize the value of the weight coefficient to construct the final finite mixture approximation with higher accuracy and numerical stability. In order to validate the developed MFM method, several one- and two-dimensional PDBV problems are studied with different mixed boundary conditions. From the numerical results, it is observed that the optimized MFM weight coefficient can improve significantly the numerical stability and accuracy of the newly developed MFM method for the various PDBV problems.

Critical buckling load optimization of the axially graded layered uniform columns

  • Alkan, Veysel
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.725-740
    • /
    • 2015
  • This study presents critical buckling load optimization of the axially graded layered uniform columns. In the first place, characteristic equations for the critical buckling loads for all boundary conditions are obtained using the transfer matrix method. Then, for each case, square of this equation is taken as a fitness function together with constraints. Due to explicitly unavailable objective function for the critical buckling loads as a function of segment length and volume fraction of the materials, especially for the column structures with higher segment numbers, initially, prescribed value is assumed for it and then the design variables satisfying constraints are searched using Differential Evolution (DE) optimization method coupled with eigen-value routine. For constraint handling, Exterior Penalty Function formulation is adapted to the optimization cycle. Different boundary conditions are considered. The results reveal that maximum increments in the critical buckling loads are attained about 20% for cantilevered and pinned-pinned end conditions and 18% for clamped-clamped case. Finally, the strongest column structure configurations will be determined. The scientific and statistical results confirmed efficiency, reliability and robustness of the Differential Evolution optimization method and it can be used in the similar problems which especially include transcendental functions.

Optimal Solution of integral Coefficients in Distance Relaying Algorithm for T/L Protection considering Frequency Characteristics (주파수 특성을 고려한 송전선 보호용 적분근사거리계전 알고리즘의 최적 적분 계수 결정)

  • Cho, Kyung-Rae;Hong, Jun-Hee;Jung, Byung-Tae;Cho, Jung-Hyun;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.42-44
    • /
    • 1994
  • This paper presents the method of estimating integral coefficients of new distance relaying algorithm for transmission line protection. The proposed method is based on the differential equation calculates impedance value by approximation of integral term of integro-differential equation which relate voltage with current. As a result, we can determine the integral coefficients in least square error sense in frequency domain and we take into consideration the analog filter characteristics and frequency domain characteristics of the system to be protected. The simulation results showed that these coefficients can be successfully used to obtain impedance value in distance relay.

  • PDF

Modified Current Differential Relay for Transformer Protection Unaffected by Remanent flux (잔류자속에 무관한 변압기 보호용 수정전류차동 계전기)

  • 강용철;김은숙
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.9
    • /
    • pp.500-506
    • /
    • 2004
  • This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

Modified Current Differential Relay for $Y-{\Delta}$ Transformer Protection ($Y-{\Delta}$ 변압기 보호용 수정 전류차동 계전기)

  • Jin, En-Shu;Kang, Yong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.95-101
    • /
    • 2006
  • This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.

Differential Game Approach to Competitive Advertising Model

  • Park, Sung-Joo;Lee, Keon-Chang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.95-105
    • /
    • 1986
  • This paper presents an adaptive algorithm to generate a near-optimal closed-loop solution for a non-zero sum differential game by periodically updating the solutions of the two-point boundary-value problem. Applications to competitive advertising problem show that the adaptive algorithm can be used as an efficient tool to solve the differential game problem in which one player may take advantage of the other's non-optimal play.

  • PDF

A MATRIX FORMULATION OF THE TAU METHOD FOR FREDHOLM AND VOLTERRA LINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Aliabadi, M.-Hosseini;Shahmorad, S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.667-677
    • /
    • 2002
  • In this paper we obtain the matrix Tau Method representation of a general boundary value problem for Fredholm and Volterra integro-differential equations of order $\nu$. Some theoretical results are given that simplify the application of the Tau Method. The application of the Tau Method to the numerical solution of such problems is shown. Numerical results and details of the algorithm confirm the high accuracy and user-friendly structure of this numerical approach.