• Title/Summary/Keyword: Differential Type

Search Result 1,520, Processing Time 0.023 seconds

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Stability Analysis of Linear Uncertain Differential Equations

  • Chen, Xiaowei;Gao, Jinwu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.2-8
    • /
    • 2013
  • Uncertainty theory is a branch of mathematics based on normolity, duality, subadditivity and product axioms. Uncertain process is a sequence of uncertain variables indexed by time. Canonical Liu process is an uncertain process with stationary and independent increments. And the increments follow normal uncertainty distributions. Uncertain differential equation is a type of differential equation driven by the canonical Liu process. Stability analysis on uncertain differential equation is to investigate the qualitative properties, which is significant both in theory and application for uncertain differential equations. This paper aims to study stability properties of linear uncertain differential equations. First, the stability concepts are introduced. And then, several sufficient and necessary conditions of stability for linear uncertain differential equations are proposed. Besides, some examples are discussed.

LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • Goo, Yoon Hoe
    • The Pure and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • The present paper is concerned with the notions of Lipschitz and asymptotic stability for perturbed nonlinear differential system knowing the corresponding stability of nonlinear differential system. We investigate Lipschitz and asymtotic stability for perturbed nonlinear differential systems. The main tool used is integral inequalities of the Bihari-type, in special some consequences of an extension of Bihari's result to Pinto and Pachpatte, and all that sort of things.

DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR GENERALIZED BESSEL FUNCTIONS

  • Al-Kharsani, Huda A.;Baricz, Arpad;Nisar, Kottakkaran S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.127-138
    • /
    • 2016
  • Differential subordination and superordination preserving properties for univalent functions in the open unit disk with an operator involving generalized Bessel functions are derived. Some particular cases involving trigonometric functions of our main results are also pointed out.

A DIFFERENTIAL EQUATION FOR MULTIPLE BESSEL POLYNOMIALS WITH RAISING AND LOWERING OPERATORS

  • Baek, Jin-Ok;Lee, Dong-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.445-454
    • /
    • 2011
  • In this paper, we first find a raising operator and a lowering operator for multiple Bessel polynomials and then give a differential equation having multiple Bessel polynomials as solutions. Thus the differential equations were found for all multiple orthogonal polynomials that are orthogonal with respect to the same type of classical weights introduced by Aptekarev et al.

A NOTE ON MULTILINEAR PSEUDO-DIFFERENTIAL OPERATORS AND ITERATED COMMUTATORS

  • Wen, Yongming;Wu, Huoxiong;Xue, Qingying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.851-864
    • /
    • 2020
  • This paper gives a sparse domination for the iterated commutators of multilinear pseudo-differential operators with the symbol σ belonging to the Hörmander class, and establishes the quantitative bounds of the Bloom type estimates for such commutators. Moreover, the Cp estimates for the corresponding multilinear pseudo-differential operators are also obtained.

OSCILLATIONS OF SOLUTIONS OF SECOND ORDER QUASILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

  • Jin, Chuhua;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.1-16
    • /
    • 2007
  • Some Kamenev-type oscillation criteria are obtained for a second order quasilinear damped differential equation with impulses. These criteria generalize and improve some well-known results for second order differential equations with land without impulses. In addition, new oscillation criteria are also obtained to generalize and improve known results. Two examples of applications are given to illustrate the theory.

LIPSCHITZ AND ASYMPTOTIC STABILITY OF PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Goo, Yoon Hoe
    • The Pure and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • The present paper is concerned with the notions of Lipschitz and asymptotic for perturbed functional differential system knowing the corresponding stability of functional differential system. We investigate Lipschitz and asymptotic stability for perturbed functional differential systems. The main tool used is integral inequalities of the Bihari-type, and all that sort of things.

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

Experimental and Parametric Study on the Output Coupled type Continuously Variable Transmission

  • Kim, Yeon-Su;Park, Jae-Min;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.28-36
    • /
    • 2002
  • The continuously variable transmission (CVT) mechanism considered here is the output coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type continuously variable unit (CVU). One shaft of the CVU is connected directly to the output shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations (speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Parametric analysis is carried out in relation to the efficiency, speed ratio and power ratios in order to assist in the design of an optimum configuration. Some useful properties associated with power flow modes also are discussed in the output coupled type continuously variable transmission.