• 제목/요약/키워드: Differential Pressure Gauge

검색결과 22건 처리시간 0.031초

차압센서를 이용한 극저온 액화가스 저장용기의 액면측정장치 설계에 관한 연구 (A study on designing a level gauge for cryogenic liquefied storage vessel by using a differential pressure sensor)

  • 최동준;임형일;도덕희;조종래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.384-390
    • /
    • 2013
  • 최근 반도체, LCD, 첨단전자산업 관련 분야의 급팽창으로 고압 액화가스 사용이 증가함에 따라 극저온 용기 및 저장탱크도 대형화되는 추세이다. 저장탱크 내의 잔존량을 측정하기 위해 기존에는 아날로그식 액면계와 압력계를 이용하고 있으나 이는 측정이 불편하고 정밀도가 부정확하여 정확한 양을 측정하기가 어렵다. 이에 본 연구에서는 차압센서를 이용하여 극저온 액화가스 저장탱크의 압력과 액면 높이를 측정하고 유선통신기능으로 PC 모니터링이 가능하도록 하며, 모바일 프린터를 연결하여 특정데이터가 출력 가능하도록 디지털식 액면측정장치를 설계한다.

ER-Valve 간극내에서 분산계 ER유체의 유동특성 (Flow Characteristics of Dispersive ER Fluid Clearance between ER-Valve)

  • 장성철;염만오;이종두;장성수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1123-1126
    • /
    • 2003
  • In this research 4 plate type ER-Valves which have same surface but different width and length are designed and an experimental apparatus is constructed. With this experimental apparatus, flow rate and pressure drop of ER fluid flowing in ER-Valve are measured by varying electric field strength of ER-valve, and relation between valve types and pressure drop is also experimented. ER fluid is made silicon oil mixed with 40wt% starch having hydrous particles. The pressure drop according to the strength of electric field by differential pressure gauge in the present ER-Valve was used. This test reviewed experiment for the special changes of ER fluids in the steady flow condition.

  • PDF

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

비미분형 맥동검출변환기 개발 (Developed of non-differential pulse detection)

  • 김현규;한상휘;이용동;박영배;허웅
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.573-576
    • /
    • 1998
  • In this paper, we devised pulse detection transducer that has non-differential characteristics for pulse detection on chongu arterial. The transducer consist of load cell and driving electronic circuits. Load cell consist of cantilever and two metal film strain gauge. The pressure signal from chongu artery is delivered to load cell using artery rider that attached to cantilever. Therefore the pressure pulse signal can obtain by the developed transducer. As the results of experiment, the developed transducer has a good linearity at pressure to voltage conversion and acan detect non-differential pulse signal from chongu artery.

  • PDF

주위 온도의 급격한 변화에 따른 압력 및 차압 전송기의 특성 변화 (The Characteristic Change of Pressure and Differential Transmitter due to a Rapid Change of Ambient Temperature)

  • 정종태;하영철;이철구;허재영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.321-326
    • /
    • 2004
  • The pressure and differential pressure(DP) transmitters are used for gas flow rate calculation on the orifice gas metering system. On site, the pressure and DP transmitters are installed in a shelter to diminish the affects of environmental change such as an ambient temperature. But there has been an argument about the effectiveness of the shelter and this brought up the necessity to verify the affects of ambient temperature. These experiments were performed to verify the ambient temperature effects as observing the output of transmitters when the ambient temperature were changed from $-30^{\circ}C$ to $50^{\circ}C$. The results showed that the most of transmitters were operated in the spec range of performance criteria presented by manufacturer but the rapid change of ambient temperature could cause the larger measurement error for the DP transmitter of low span than others. Therefore the pressure and DP transmitters need to be operated and controlled within the proper range of ambient temperature.

  • PDF

대심도 준설 매립지반에서의 층별침하 계측관리에 관한 사례 연구 (Instrumentation Management of Differential Settlement of the Deep Soft Ground with Dredged Clay Reclaimed in the Upper)

  • 김태형;강승찬;장지건;허성훈
    • 한국지반신소재학회논문집
    • /
    • 제22권1호
    • /
    • pp.87-96
    • /
    • 2023
  • 상부에 준설매립점토층이 존재하고 점토층이 두껍게 분포되어 있는 부산항 신항만에서 측정된 지표침하 값과 층별침하 값은 많은 차이가 있다. 이런 결과의 원인과 해결방안을 찾기 위하여 연약지반 개량에 사용된 층별침하계의 실태, 층별침하계 형식별 특성, 설치방법, 계측 빈도, 계측데이터 관리방안, 결과의 정리 및 분석 등에 대해 고찰해 보았다. 대변형이 발생하는 대심도 연약지반 개량공사에서 스크류타입의 층별침하계의 경우 휨 변형이 다른 형식의 계측기에 비해 적어 망실의 우려도 적고 각 지층별로 천공하여 계측기를 설치하므로 데이터의 신뢰도도 상대적으로 높다. 정도 높은 침하계측 자료의 양이 많을수록 침하분석 정밀도는 높아지므로 표준시방서에서 제시한 계측빈도보다 기준을 강화하여 관리가 필요하다. 층별침하계 계측데이터의 관리는 측점별 지표침하량, 층별침하량, 간극수압계 침하량과 같이 해당 구간의 침하량과 성토고의 경시 그래프 작성하여 관리하는 것이 바람직하다. 침하분석은 압축특성이 다른 다층지반일 경우 층별침하 데이터를 이용하여 각 지층별 압밀특성을 각각 산정하여 침하분석이 이루어지는 게 더 타당하다.

Modelling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Yoo, Hui-Ryong;Park, Yong-Woo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.448-448
    • /
    • 2000
  • This paper deals with dynamic behaviour analysis for pipeline inspection gauge (PIG) flow control in natural gas pipeline. The dynamic behaviour of the PIG is depending on the different Pressure between the rear and nose parts, which is generated by injected gas flow behind PIG's tail and expelled gas flow in front of its nose. To analyze the dynamic behaviour characteristics such as gas flow in pipeline, and the PIG's position and velocity, mathematical model is derived as two types of a nonlinear hyperbolic partial differential equation for unsteady flow analysis of the PIG driving and expelled gas, and nonhomogeneous differential equation for dynamic analysis of PIG. The nonlinear equation is solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used when we solve the steady flow equations to get initial flow values and the dynamic equation of PIG. The gas upstream and downstream of PIG are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. The simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of PIG with different operational conditions of pipeline.

  • PDF

Verification of the Theoretical Model for Analyzing Dynamic Behavior of the PIG from Actual Pigging

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Yong-Woo;Yoo, Hui-Ryong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1349-1357
    • /
    • 2003
  • This paper deals with verification of the theoretical model for dynamic behavior of Pipeline Inspection Gauge (PIG) traveling through high pressure natural gas pipeline. The dynamic behavior of the PIG depends on the differential pressure across its body. This differential pressure is generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze the dynamic behavior characteristics such as gas flow in pipeline, and the PIG position and velocity, not only the mathematical models are derived, but also the theoretical models must be certified by actual pigging experiment. But there is not any found results of research on the experimental certification for dynamic behavior of the PIG. The reason is why the fabrication of the PIG as well as, a field application are very difficult. In this research, the effectiveness of the introduced solution using the method of characteristics (MOC) was certified through field application. In-line inspection tool, 30" geometry PIG, was fabricated and actual pigging was carried out at the pipeline segment in Korea Gas Corporation (KOGAS) high pressure system, Incheon LT (LNG Terminal) -Namdong GS (Governor Station) line. Pigging is fulfilled successfully. Comparison of simulation results with experimental results show that the derived mathematical models and the proposed computational schemes are effective for predicting the position and velocity of the PIG with a given operational conditions of pipeline.

ER 유체로 작동되는 벨브의 제작 및 성능실험 (Design and Performance Test of Valve Operated by ER Fluids)

  • 장성철;염만오
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.63-68
    • /
    • 2004
  • Recently ER fluids are put to practical use in fluid power industry field. As only with electrical signal change to the valve in which ER fluid flowing, ER fluid flow is controlled, so devepment of simple ER valves have been tried. In this case a technical problem is to check the pressure drop caused from flow rate change in valves because the pressure drop is very small. In this study ER valves are designed and manufactured, and small pressure drop induced from flow rate change is checked by pressure transducer which is made with appling strain gage. The ER valves and pressure drop check method are considered to be applied to the fluid power industry.